論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
製備含有聚氧代氮代苯并環己烷之偶氮苯全像儲存材料及其特性分析 Synthesis of Holographic Materials Based on Azobenzene Containing Polybenzoxazines and Their Optical Characterization |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
67 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2019-06-27 |
繳交日期 Date of Submission |
2019-07-02 |
關鍵字 Keywords |
偶氮苯、全像儲存材料、氧代氮代苯并環己烷、表面起伏光柵 Holographic material, Azobenzene, Benzoxazine, Surface relief grating |
||
統計 Statistics |
本論文已被瀏覽 5636 次,被下載 0 次 The thesis/dissertation has been browsed 5636 times, has been downloaded 0 times. |
中文摘要 |
本研究將分成材料製備與光學應用兩個階段,前期為材料合成,分別合成出含有偶氮苯 (azobenzene) 與吡啶 (pyridine) 之Azo-hexyl-Br、Azo-Pyridine-2NO2與Azo-Pyridine-2NH2等三種單體,再合成出含有氧代氮代苯并環己烷 (benzoxazine, Bz) 之Azo-Pyridine-Phenol Bz與Azo-Pyridine-Bisphenol Bz,利用傅立葉紅外線光譜儀 (FT-IR) 與核磁共振儀 (NMR) 進行完整之結構鑑定,並對於兩種高分子量測差示掃描量熱法 (DSC) 與熱重分析儀 (TGA) 對其進行熱性質分析;後期為光學應用,分別將所合成之高分子製作成光學試片並進行全像干涉實驗,干涉實驗前需了解各單體喜好之吸收光波段,故將單體Azo-hexyl-Br、Azo-Pyridine-2NO2與Azo-Pyridine-2NH2於波長365 nm之紫外光進行照射數分鐘,並將其分別進行紫外光可見光光譜儀 (UV-vis) 之量測,進一步了解三種單體對於光吸收之程度,而單體Azo-hexyl-Br具有最佳光吸收以及結構中具有偶氮苯之cis-trans轉變。本實驗使用532 nm之綠光雷射作為寫入光束,以及使用633 nm之紅光雷射作為讀取光束,經由兩束光干涉後得到表面起伏光柵,並量測各階繞射光強度並計算其繞射效率,再利用原子力顯微鏡 (AFM) 與三維輪廓儀 (Alpha-step) 得到光柵之週期、深度以及薄膜厚度。 |
Abstract |
In this study, it will be divided into two parts of material synthesis and optical characterizations. The first part is the synthesis of materials. The monomers Azo-hexyl-Br, Azo-Pyridine-2NO2 and Azo-Pyridine-2NH2 on azobenzene containing pyridine are synthesized respectively. Further, the Azo-Pyridine-Phenol Bz and Azo-Pyridine-Bisphenol Bz containing polybenzoxazine were synthesized. The monomers and polymers characterized by Fourier Transform Infrared spectrometer (FT-IR) and Nuclear Magnetic Resonance spectrometer (NMR). For getting completed structural identification and thermal properties analysis, these two polymers characterized by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analyzer (TGA); the second part is optical application. The synthesized polymers are made into an optical sample to a holographic interference experiment. Before the experiment, it is necessary to understand the absorption band of the monomer preference, so the monomers Azo-hexyl-Br, Azo-Pyridine-2NO2 and Azo-Pyridine-2NH2 are at the wavelength of absorption light. The 365 nm ultraviolet light was irradiated for several minutes, and the UV-vis was measured separately to understand the degree of light absorption of the three structures. The initial monomer Azo-hexyl-Br had good performance on light absorption. It can be known that the structure has a cis-trans transition of azobenzene, and since the comparative spectrum shows that pyridine has a light absorption reaction for ultraviolet light. Therefore, this experiment uses a green light laser of 532 nm as a writing beam, and also uses a red light laser of 633 nm as a reading beam. |
目次 Table of Contents |
目錄 學位論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧與原理 3 2.1. 全像術 3 2.2. 全像片 3 2.2.1. 振幅式全像片與相位式全像片 3 2.2.2. 體積全像片與薄全像片 4 2.3. 繞射效率(Diffraction Efficiency) 6 2.4. 全像儲存技術 6 2.5. 全像儲存材料 7 2.5.1. 鹵化銀乳劑 (Silver Halide Emulsion) 7 2.5.2. 重鉻酸鹽明膠 (Dichromated Gelatin, DCG) 7 2.5.3. 光折變晶體材料 (Photorefractive Crystal Material) 8 2.5.4. 光致聚合材料 (Photopolymer) 8 2.5.5. 光致變色材料 (Photochromism) 9 第三章 研究方法 13 3.1. 實驗藥品與材料 13 3.2. 實驗流程 14 3.2.1. 含偶氮苯之高分子材料製備 14 3.2.2. 光學試片製備 18 3.3. 實驗儀器及分析方法 18 3.3.1 傅立葉轉換紅外光光譜儀 (Fourier Transform Infrared Spectrometer, FTIR) 18 3.3.2 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 19 3.3.3 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 19 3.3.4 熱重分析儀 (Thermogravimetric Analysis, TGA) 19 3.3.5 紫外光/可見光/近紅外光光譜儀 (Ultraviolet/Visible/Near IR Spectrometer, UV-vis) 20 3.3.6 三維輪廓儀 (Alpha-step Profilometer) 20 3.3.7 原子力顯微鏡 (Atomic Force Microscopy, AFM) 20 3.3.8 光功率計 (Power Meter) 20 3.4. 全像干涉實驗 21 3.4.1. 實驗設備 21 3.4.2. 實驗架構 21 3.4.3. 實驗結果計算 22 第四章 結果與討論 23 4.1. 材料合成之結構鑑定與分析研究 23 4.1.1. 單體Azo-hexyl-Br之結構鑑定分析 23 4.1.2. 單體Azo-Pyridine-2NO2之結構鑑定分析 24 4.1.3. 單體Azo-Pyridine-2NH2之結構鑑定分析 24 4.1.4. 高分子Azo-Pyridine-Phenol Bz之結構鑑定分析 25 4.1.5. 高分子Azo-Pyridine-Bisphenol Bz之結構鑑定分析 26 4.1.6. 高分子Azo-Pyridine-Phenol Bz與Azo-Pyridine-Bisphenol Bz綜合討論 35 4.1.7. 高分子Azo-Pyridine-Phenol Bz與高分子Azo-Pyridine-Bisphenol Bz之熱性質分析 38 4.2. 光學特性之鑑定分析 42 4.2.1. 單體 Azo-hexyl-Br、Azo-Pyridine-2NO2、Azo-Pyridine-2NH2 42 4.2.2. 高分子 Azo-Pyridine-Phenol Bz 44 4.2.3. 高分子Azo-Pyridine-Bisphenol Bz 47 4.2.4. 綜合討論 50 第五章 結論 51 參考文獻 52 |
參考文獻 References |
1. Huang, C.-W., W.-Y. Ji, and S.-W. Kuo, Stimuli-responsive supramolecular conjugated polymer with phototunable surface relief grating. Polymer Chemistry, 2018. 9(20): p. 2813-2820. 2. Huang, C.-W., et al., Stimuli-responsive supramolecular materials: photo-tunable properties and molecular recognition behavior. Polymer Chemistry, 2016. 7(4): p. 795-806. 3. Lin, C.H., et al., Emission and surface properties of main-chain type polybenzoxazine with pyridinyl moieties. RSC Advances, 2014. 4(17): p. 8692-8698. 4. Saleh, B.E. and M.C. Teich, Fundamentals of photonics. 1991: John Wiley & Sons. 108-149. 5. C.-R, L., Studies of Holographic Grating Recordings and Their Applications based on Azo-Dye-Doped Polymer-Ball-Type Polymer-Dispersed Liquid Crystal Films. 2003, National Cheng Kung University. p. 1-94. 6. 陳垣佑, Study of light guiding characteristics for the luminescent solar concentrator with grating structures. 2014. 7. Lin, S.H., et al., Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage. Optics letters, 2000. 25(7): p. 451-453. 8. Katano, Y., et al., Data demodulation using convolutional neural networks for holographic data storage. Japanese Journal of Applied Physics, 2018. 57(9S1): p. 09SC01. 9. Ward, A. and L. Solymar, Diffraction efficiency limitations of holograms recorded in silver-halide emulsions. Applied optics, 1989. 28(10): p. 1850-1855. 10. Chang, B.J. and C.D. Leonard, Dichromated gelatin for the fabrication of holographic optical elements. Applied optics, 1979. 18(14): p. 2407-2417. 11. Liu, S., et al., High intensity response of photopolymer materials for holographic grating formation. Macromolecules, 2010. 43(22): p. 9462-9472. 12. Patel, P.D., et al., Theoretical study of photochromic compounds, part 2: Thermal mechanism for byproduct formation and fatigue resistance of diarylethenes used as data storage materials. International Journal of Quantum Chemistry, 2009. 109(15): p. 3711-3722. 13. Bouas-Laurent, H. and H. Dürr, Organic photochromism (IUPAC technical report). Pure and Applied Chemistry, 2001. 73(4): p. 639-665. 14. Shallcross, R.C., et al., Photochromic transduction layers in organic memory elements. Advanced Materials, 2013. 25(3): p. 469-476. 15. Blinov, L.M., M.V. Kozlovsky, and G. Cipparrone, Photochromism and holographic grating recording on a chiral side-chain liquid crystalline copolymer containing azobenzene chromophores. Chemical physics, 1999. 245(1-3): p. 473-485. 16. Lohse, M., et al., Gating the photochromism of an azobenzene by strong host–guest interactions in a divalent pseudo [2] rotaxane. Chemical Communications, 2015. 51(48): p. 9777-9780. 17. Hoffmann, K. and F. Marlow, Molecular sieve based materials for photonic applications. Handbook of Zeolite Science and Technology, SM Auerbach, KA Carrado, PK Dutta, eds, Marcel Dekker, Inc., New York, 2003: p. 921-949. 18. Holly, F.W. and A.C. Cope, Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. Journal of the American Chemical Society, 1944. 66(11): p. 1875-1879. 19. Burke, W., 3, 4-Dihydro-1, 3, 2H-Benzoxazines. Reaction of p-substituted phenols with N, N-dimethylolamines. Journal of the American Chemical Society, 1949. 71(2): p. 609-612. 20. Ning, X. and H. Ishida, Phenolic materials via ring‐opening polymerization of benzoxazines: Effect of molecular structure on mechanical and dynamic mechanical properties. Journal of Polymer Science Part B: Polymer Physics, 1994. 32(5): p. 921-927. 21. Ghosh, N., B. Kiskan, and Y. Yagci, Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Progress in polymer Science, 2007. 32(11): p. 1344-1391. 22. Aydogan, C., et al., Electrochemical manipulation of adhesion strength of polybenzoxazines on metal surfaces: from strong adhesion to dismantling. Rsc Advances, 2014. 4(52): p. 27545-27551. 23. Mohamed, M. and S.-W. Kuo, Polybenzoxazine/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymers, 2016. 8(6): p. 225. 24. El-Mahdy, A.F. and S.-W. Kuo, Direct synthesis of poly (benzoxazine imide) from an ortho-benzoxazine: its thermal conversion to highly cross-linked polybenzoxazole and blending with poly (4-vinylphenol). Polymer Chemistry, 2018. 9(14): p. 1815-1826. 25. Chernykh, A., J. Liu, and H. Ishida, Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer, 2006. 47(22): p. 7664-7669. 26. Takeichi, T., T. Kano, and T. Agag, Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer, 2005. 46(26): p. 12172-12180. 27. Ye, Y., et al., Synthesis and characterization of thermally cured polytriazole polymers incorporating main or side chain benzoxazine crosslinking moieties. Polymer Chemistry, 2014. 5(8): p. 2863-2871. 28. Kiskan, B., et al., Preparation of conductive polybenzoxazines by oxidative polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(6): p. 999-1006. 29. Hanbeyoglu, B., B. Kiskan, and Y. Yagci, Hydroxyl functional polybenzoxazine precursor as a versatile platform for post-polymer modifications. Macromolecules, 2013. 46(21): p. 8434-8440. 30. Agag, T., et al., Side‐chain type benzoxazine‐functional cellulose via click chemistry. Journal of Applied Polymer Science, 2012. 125(2): p. 1346-1351. 31. Kiskan, B. and Y. Yagci, Synthesis and characterization of naphthoxazine functional poly (ε-caprolactone). Polymer, 2005. 46(25): p. 11690-11697. 32. Ates, S., et al., Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups. Polymer, 2011. 52(7): p. 1504-1509. 33. Nakamura, M. and H. Ishida, Synthesis and properties of new crosslinkable telechelics with benzoxazine moiety at the chain end. Polymer, 2009. 50(12): p. 2688-2695. 34. Wang, C.F., et al., Low‐surface‐free‐energy materials based on polybenzoxazines. Angewandte Chemie International Edition, 2006. 45(14): p. 2248-2251. 35. Ishida, H. and D.J. Allen, Physical and mechanical characterization of near‐zero shrinkage polybenzoxazines. Journal of polymer science Part B: Polymer physics, 1996. 34(6): p. 1019-1030. 36. Ishida, H. and Y. Rodriguez, Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer, 1995. 36(16): p. 3151-3158. 37. Ning, X. and H. Ishida, Phenolic materials via ring‐opening polymerization: Synthesis and characterization of bisphenol‐A based benzoxazines and their polymers. Journal of Polymer Science Part A: Polymer Chemistry, 1994. 32(6): p. 1121-1129. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |