Responsive image
博碩士論文 etd-0604122-151225 詳細資訊
Title page for etd-0604122-151225
論文名稱
Title
彈簧位置於靜平衡模型之分析與程式開發
Analysis and Program Development for Springs Position in Static Balancing Models
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-06-15
繳交日期
Date of Submission
2022-07-04
關鍵字
Keywords
靜平衡機構、靜力平衡、重力補償、彈簧佈置、電腦輔助設計
Statically Balanced Mechanism, Static Balancing, Gravity Compensation, Spring Arrangement, Computer-Aided Design
統計
Statistics
本論文已被瀏覽 129 次,被下載 3
The thesis/dissertation has been browsed 129 times, has been downloaded 3 times.
中文摘要
在重力的牽引下,任何的機構或機械皆需要一個支撐力,才能使其在任意可到達的位置上保持停駐的平衡狀態,平衡也可以使該機構具有省力或省能源的效果,因此,「平衡」的概念在機構設計中是不容忽略的。平衡的方式簡單可區分為主動式與被動式,主動式平衡是指藉由額外能源的輸入來達到平衡;被動式平衡則是純粹藉由機構本身搭配特殊元件的設計,使整體機構在帶動後仍然可於所有的新位置上保持停駐的平衡狀態,並且只需要施加微小的外力,即能夠慢速地移動具有一定重量的機構,也稱其為「重力平衡」或「靜(力)平衡」。因此,被動式平衡由於設計簡單、低成本、高安全性等優勢,已被應用於各領域中。
本論文首先回顧過去被研究過的靜平衡機構類型,並且以具有最多優勢且被廣泛應用的「彈簧型」靜平衡做為研究方向。首先,參考於文獻「空間彈簧平衡理論」,利用總位能守恆推導空間二自由度(旋轉-旋轉關節)靜平衡模型於單、雙彈簧連接的平衡方程式。接著,使用SolidWorks建模與模擬,針對雙彈簧於空間中不同位置的靜平衡效果與其他影響進行比較和分析。於此研究過程中,發現三點有關於該文獻上缺失的考量,將於本研究中提出並作為主要貢獻,包含 : 1. 修正單彈簧連接中,平衡方程式的不完全推導。 2. 根據平衡方程式的推算,對彈簧位置的限制條件進行分析與統整,例如彈簧連接角度及其範圍。 3. 推導上事先假設連桿質心位置落於中心線上,可能會導致部分雙彈簧機構產生不平衡的結果,可以於彈簧位置的佈置上來解決。最後,將上述空間二自由度靜平衡模型的彈簧位置分類、限制約束與模擬結果的分析等,應用於MATLAB (APP Designer),開發一電腦輔助設計程式。期望提供工程師一個使用者友善的環境介面,以應對各種類型的彈簧位置設計。
Abstract
Because of the gravity, mechanism needs a force support to keep its stationary status in any reachable position, also known as "balance". Balance can also allow the mecha-nism owns the features of labor-saving and reduction of energy consumption. Conse-quently, the concept of balance in the mechanism design cannot be ignored. Basically, there are two approaches, active and passive, to accomplish balance. The passive bal-ance method, i.e., static balancing or gravity compensation, has the advantages of easy installation, low cost, and high security so that it has been applied to various fields.
In this thesis, many different types of statically balanced mechanism in the past are reviewed at the beginning and the type with “springs” in static balancing, which is the most advantageous and widely used, is selected as the study’s direction. Referring to the literature “Spatial Spring Equilibrator Theory”, the balancing equations in spatial two-DOF (rotary-rotary joint) static balancing models with single and double springs are carefully derived. Balancing performance is then investigated and analyzed by simulations using SolidWorks with different spring positions. Along this research pro-cess, three facts regarding lack of consideration in the literature were found and will be presented as the major contribution of this thesis. 1. Incomplete derivation in bal-ancing equations for single-spring framework is amended. 2. The restrictions on the spring position such as spring connection angles and their ranges are analyzed and or-ganized. 3. Some assumptions are not feasible in real world and may lead to unbal-anced results in some situations for the double-spring mechanism and can be fixed by arrangement of springs. Finally, according to mechanism classification, mathematical constraints and analysis of simulation results, a computer-aided design program is also developed by MATLAB with APP Designer to provide engineers a user-friendly inter-face environment to cope with arrangement of springs in the spring-supported static balancing mechanism.
目次 Table of Contents
論文審定書 ..………………………………......………………………...……... i
誌謝 ..………………………..………………………………………………….. ii
摘要 ..…………………………..………………………………………………. iii
Abstract ...………………………....…………………………………………… iv
目錄 ..……………………………...…………………………….………...……. v
圖目錄 ..…………………………...………………………...………..……….. vii
表目錄 …………………………………………………………….……...……. xi
第一章 緒論 ……………………………………………………………...…….. 1
1.1 研究背景 ………………………………………….……………....…........ 1
1.2 文獻回顧 ………......……………………………………………………... 4
1.3 研究動機與目的 ………………………..………………………....…….. 7
1.4 論文架構 ……………………………………………..………………...… 9
第二章 研究理論 ………………………………………………………..…… 10
2.1 零自由長度彈簧 ……………………………………………………….. 10
2.2 靜平衡原理 …………………………………………….…………….… 12
2.3 平衡公式推導 ………………………………………………………...... 18
2.3.1 單彈簧 ………………………………………………………......….. 19
2.3.2 雙彈簧 ………………………………..……………………..……… 21
2.4 彈簧連接之分類與限制 ……………………………………………..... 26
第三章 模擬驗證與結果分析 …………………………………………….... 30
3.1 參考模型與假設 ………………………………………....……………. 30
3.2 模擬方法 ………………………………………………….……….…… 31
3.3 模型展示與平衡驗證 ……………………………………....…………. 37
3.3.1 單彈簧模型模擬 ……………………………………….………….. 38
3.3.2 雙彈簧模型模擬 …………………………………….....………….. 40
3.4 未平衡之問題討論 ……….…………………………………………… 48
3.5 結果比較與分析 ………………………………………....……………. 54
3.5.1 平衡結果的綜合比較 …………………………...…………….….. 54
3.5.2 彈簧連接位置的影響與分析 ………………..……………….….. 56
第四章 介面與程式設計 ………………………………………………..….. 59
4.1 設計構思與簡介 ………………………………………………………. 59
4.2 介面展示與操作說明 ………………………………….……...………. 61
4.2.1 指示介面 ……………………………………………....……….….. 61
4.2.2 單彈簧介面 ………………………………………....………….….. 63
4.2.3 雙彈簧介面 …………………………………………………….….. 65
4.2.4 建議介面 ……………………………………………………….….. 72
第五章 結論與未來展望 ………………………………………………….... 73
5.1 結論 ……………………………………………………….……………. 73
5.2 未來展望 ………………………...………………….……………….… 75
參考文獻 …………………………………………………………………….. 76
附錄A 平衡方程式推導補充說明 …………………………………………. 79
附錄B 建模與彈簧連接之相關參數 ………………………………...……. 85
參考文獻 References
[1] S. K. Agrawal, S. K. Banala, A. Fattah, V. Sangwan, V. Krishnamoorthy, J. P. Scholz, and W. L. Hsu, “Assessment of Motion of a Swing Leg and Gait Rehabil-itation with a Gravity Balancing Exoskeleton”, IEEE Transactions on Neural Sys-tems and Re- habilitation Engineering, Vol. 15, No. 3, pp. 410-420, September 2007.
[2] https://www.hocoma.com/services/product-training/armeo/, Armeo®Spring by Hocoma, Commercial Products.
[3] https://www.suitx.com/, MAX by SUIT X, Commercial Products.
[4] https: // www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J142604730042131234&sid=0L104472382151914445&sq=,2021-04-27,智慧農業,資料來源:國立中山大學機械與機電工程學系/林韋至副教授。
[5] W. J. Green, D. M. Baechle, Z. K. Wingard, F. Morelli, and A. C. Boynton, “ThirdArm Weapon Interface System”, U. S. Patent 20180364004, Dec. 20. 2018.
[6] http://eemov.com/, Eemov Camera Stabilizer Systems by EEMOV, Commercial P-roducts.
[7] M. J. French and M. B. Widden, “The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp”, Institution of Mechanical Engi-neers, Part C: Journal of Mechanical Engineering Science, Vol. 214, No. 3, pp. 501-508, March 2000.
[8] K. J. Fisher, “Counterbalance Mechanism Positions a Light with Surgical Preci-sion”, Mechanical Engineering, Vol. 114, No. 5, pp. 76-80, May 1992.
[9] https://toolbalancerarms-3arm.com/, Tool Balancers by 3arm®, Commercial Products.
[10] D. X. H. Chew, K. L. Wood, and U. X. Tan, “Design of a Passive Self-Regulating Gravity Compensator for Variable Payloads”, Journal of Mechanical Design, Vol. 141, No. 10, pp. 102302 (11 pages), October 2019.
[11] 朱佑麟,單自由度變負載自動調整靜平衡機構之設計,國立台灣科技大學機械工程研究所碩士論文,民國104年。
[12] T. Rahman, W. Sample, R. Seliktar, M. Alexander, and M. Scavina, “A Body-Powered Functional Upper Limb Orthosis”, Journal of Rehabilitation Research and Development, Vol. 37, No. 6, pp. 675-680, November/December 2000.
[13] R. Altenburger, D. Scherly, and K. S. Stadler, “Design of a Passive, Iso-Elastic Upper Limb Exoskeleton for Gravity Compensation”, ROBOMECH Journal, Vol. 3, No. 12, pp. 1-7, 2016.
[14] A. Gopalswamy, P. Gupta, and M. Vidyasagar, “Passive Mechanical Gravity Compensation for Robot Manipulators”, IEEE International Conference on Robotics and Automation, Sacramento, California, pp. 664-669, April 1992.
[15] N. Ulrich and V. Kumar, “Passive Mechanical Gravity Compensation for Robot Manipulators”, IEEE International Conference on Robotics and Automation, Sacramento, California, pp. 1536-1541, April 1991.
[16] N. Takesue, T. Ikematsu, H. Murayama, and H. Fujimoto, “Design and Prototype of Variable Gravity Compensation Mechanism (VGCM)”, Journal of Robotics and Mechatronics, Vol. 23, No. 2, pp. 249-257, January 2011.
[17] Z. Cheng, S. Foong, D. Sun, and U. X. Tan, “Towards a Multi-DOF Passive Bal- ancing Mechanism for Upper Limbs”, IEEE International Conference on Reha-bilitation Robotics, Singapore, pp. 508-513, August 2015.
[18] Z. Cheng, S. Foong, D. Sun, and U. X. Tan, “Algorithm for Design of Compliant Mechanism for Torsional Applications”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besancon, France, pp. 628-633, July 2014.
[19] Z. W. Yang and C. C. Lan, “An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs”, Mechanism and Machine Theory, Vol. 92, pp. 314-329, June 2015.
[20] T. Nakayama, T. Asahi, and H. Fujimoto, “A New Gravity Compensation System Composed of Passive Mechanical Elements for Safe Wearable Rehabilitation System”, World Scientific Publishing, Singapore, pp. 1019-1026, 2008.
[21] V. Arakelian, “Gravity Compensation in Robotics”, Advanced Robotics, Vol. 30, No. 2, pp. 79-96, September 2016.
[22] L. F. Cardoso, S. Tomazio, and J. L. Herder, “Conceptual Design of a Passive Arm Orthosis”, ASME 2002 Design Engineering Technical Conference and Computer and Information in Engineering Conference, Montreal, Canada, pp. 747-756, September-October 2002.
[23] G. J. Walsh, D. A. Streit, and B. J. Gilmore, “Spatial Spring Equilibrator Theory”, Mech. Mach. Theory, Vol. 26, No. 2, pp. 155-170, 1991.
[24] 林詩漢,創新步行輔助機構之設計與應用,國立交通大學機械工程研究所碩士論文,民國99年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code