Responsive image
博碩士論文 etd-0606121-121429 詳細資訊
Title page for etd-0606121-121429
論文名稱
Title
海水中鹽度及硫酸鹽對鹹水型人工溼地處理含氮廢水效率及甲烷釋放量影響之研究
The Effect of Salinity and Sulfate on Treatment Efficiencies and On-site Methane Emissions for Nitrogenous Wastewaters by Saline Constructed Wetlands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-07-01
繳交日期
Date of Submission
2021-07-06
關鍵字
Keywords
人工濕地、脫硝作用、脫氮、硫酸鹽、硫酸鹽還原作用
constructed wetlands, denitrification, nitrogen removal, sulfate, sulfate reduction
統計
Statistics
本論文已被瀏覽 250 次,被下載 83
The thesis/dissertation has been browsed 250 times, has been downloaded 83 times.
中文摘要
對於污水處理除了建造傳統的污水處理廠外,建設污水處理型人工溼地除對於民眾有較高的接受度外,溼地生態系統額外可提供許多的優點,例如像是可提供野生動物之棲息地、提供教育研究、景觀遊憩及改善水質等;但濕地長期被水淹沒的狀態,使得土壤長時間保持在厭氧狀態,而內部的厭氧性微生物相當活躍,可進行脫硝作用及甲烷生成作用,甲烷生成作用將有機碳轉變為甲烷再釋放到大氣中,致使排出較二氧化碳更為增強溫室效之溫室氣體甲烷。
本研究為探討不同環境之下的人工溼地運作情況,其設置四個模槽組分別為填料為普通土壤的1槽、填料中添加污泥及種植蘆葦的2槽、填料中僅添加污泥的3槽,以及填料中添加污泥及種植紅海欖的4槽。在進流水水質操控條件方面,包含進流水中含有不同鹽度及硫酸鹽等之人工污水,以研究其氮處理效果及對於甲烷排放之抑制作用。研究結果顯示,2槽在進流硫酸鹽水體參數時有86.72 %的總氮去除率,為全部測值中最高的,硫酸鹽有效加強脫氮作用的進行,硫酸鹽經硫酸還原作用生成硫化物,可促使Thiobacillus denitrificans (脫硝硫桿菌)以硫化物進行脫硝作用,而不論是何種水體參數條件下,各槽體的甲烷的釋放量並未有顯著的差別。
Abstract
In addition to construction of traditional sewage treatment plants, construction of constructed wetlands has become an alternative process for wastewater treatment. The benefits of constructed wetlands include : providing wildlife habitats, environmental education, landscape and entertainment, and improvement of water quality. However, since wetlands could be submerged in water for a long time, causing the soils to remain anaerobic in a long period. The microbial phase in the soils becomes more anaerobic and thus began to achieve more denitrification and methanogenesis. Methanogenesis would convert organic carbon into methane, and then releases the gas into the atmosphere as greenhouse gas resulting in stronger greenhouse effect than carbon dioxide. Methane (CH4) is estimated to have a value of global warm potential (GWP) of 28.Companing to the value of is carbon dioxide(CO2) equal to 1.
In the study, four same size of mesocosms of constructed wetlands were built. The four constructed wetland basins were controlled by four different conditions, as followings : tank #1 (no sludge, no vegetation), tank #2 (sludge, vegetated with the Wood-plant of Rhizophora stylosa), tank #3 (sludge, no vegetation), and tank #4 (sludge, vegetated with the herbal of Phragmites australis). In additions, five different types of influents controlled with different additions of chemical parameters. For analyzing the effect of salinity and sulfate on treatment efficiencies and methane emissions for nitrogenous wastewaters. The experimental results of this study showed that the highest percentage of removal efficiency of total nitrogen could be reached to 86.72 % in tank #2, under the condition of influent containing sulfate. Sulfate-reducing microorganisms could perform anaerobic respiration utilizing sulfate (SO42–) as terminal electron acceptor, reducing it to hydrogen sulfide(H2S) or other sulfide. The species of Thiobacillus denitrificans could achieve the oxidation of inorganic sulfur compounds and reduction of oxidized nitrogen compounds (such as nitrate, nitrite) to nitrogen. Methane emissions is non-significant difference by five different types of influents.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 4
2.1 濕地的介紹 4
2.1.1 濕地的定義 4
2.1.2 濕地的類型 5
2.1.3 濕地的價值與功能 7
2.2 濕地的元素循環 8
2.2.1 碳循環與氣體排放 8
2.2.2 氮循環與氣體排放 11
2.2.3 硫循環 13
2.3 溫室氣體介紹 16
2.3.1 溫室氣體的來源與種類 16
2.3.2 全球暖化潛勢(Global warming potential, GWP) 17
2.3.3 甲烷排放現況 18
第三章 研究方法 20
3.1 研究對象與規劃 20
3.1.1 槽體設計 20
3.1.2 槽體植物種類介紹 22
3.1.3 進流水體參數設定 24
3.2 採樣及分析 25
3.2.1 採樣時間規劃 25
3.2.2 甲烷氣體連續監測方法 26
3.2.3 水質採樣與保存 28
3.2.3 水質分析與方法 28
3.3 數據分析方法與統計 32
第四章 結果與討論 33
4.1背景介紹 33
4.2 人工溼地差異、氣象條件 33
4.3 現場監測水質變化 34
4.3.1 水溫 34
4.3.2 酸鹼值(pH值) 35
4.3.3 氧化還原電位 36
4.3.4 溶氧 37
4.3.5 鹽度 39
4.4 葉綠素a 40
4.5 磷與其化合物 41
4.6 懸浮固體與濁度 44
4.7 氮與其化合物 45
4.7.1 亞硝酸鹽氮 45
4.7.2 硝酸鹽氮 47
4.7.3 氨氮 48
4.7.4 總凱氏氮 49
4.7.5 總氮及其去除率 50
4.8 生化需氧量(Biochemical oxygen demand, BOD) 54
4.9 總有機碳(Total organic carbon , TOC) 55
4.10 CH4排放濃度變化趨勢 55
4.11環境參數與水質相關性之分析 60
第五章 結論與建議 61
5.1 結論 61
5.2 建議 62
參考資料 63
附錄A-水質監測原始數據 66
附錄B-人工溼地模擬槽圖 72
附錄C-甲烷氣體連續監測原始數據 74
參考文獻 References
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., & Enrich-Prast, A. (2011). Freshwater methane emissions offset the continental carbon sink. Science, 331(6013), 50-50.
Dincer, A. R., & Kargi, F. (1999). Salt inhibition of nitrification and denitrification in saline wastewater. Environmental Technology, 20(11), 1147-1153.
Dorney, J., Savage, R., Tiner, R. W., & Adamus, P. (Eds.). (2018). Wetland and stream rapid assessments: development, validation, and application. Academic Press.
Esposito, G., Weijma, J., Pirozzi, F., & Lens, P. N. L. (2003). Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochemistry, 39(4), 491-498.
Harada, H., Uemura, S., & Momonoi, K. (1994). Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Research, 28(2), 355-367.
Harada, H., Uemura, S., & Momonoi, K. (1994). Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Research, 28(2), 355-367.
Kleerebezem, R., & Mendezà, R. (2002). Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Science and Technology, 45(10), 349-356.
Klomjek, P., & Nitisoravut, S. (2005). Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 58(5), 585-593.
Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands. John Wiley & Sons.
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D., Michel, S. E., ... & White, J. W. (2019). Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 33(3), 318-342.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., ... & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). Ipcc.
Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. CRC press.
Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment (No. Ed. 2). McGraw-Hill, Inc..
Roy, M. C., Azeria, E. T., Locky, D., & Gibson, J. J. (2019). Plant functional traits as indicator of the ecological condition of wetlands in the Grassland and Parkland of Alberta, Canada. Ecological Indicators, 98, 483-491.
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., ... & Zhuang, Q. (2020). The global methane budget 2000–2017. Earth System Science Data, 12(3), 1561-1623.
Schimel, J. P. (1995). Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry, 28(3), 183-200.
Stein, O. R., & Hook, P. B. (2005). Temperature, plants, and oxygen: how does season affect constructed wetland performance?. Journal of Environmental Science and Health, 40(6-7), 1331-1342.
Wood, A. (1995). Constructed wetlands in water pollution control: fundamentals to their understanding. Water Science and Technology, 32(3), 21-29.
水質淨化生態工程現地處理網站,環境保護署,行政院,2021。
王天元(2003)。虱目魚、大鱗鮻及吳郭魚溶氧耐受性之研究。國立中山大學海洋資源學系研究所碩士論文,高雄市。
全國環境水質監測資訊網,行政院環境保護署監資處,2021。
李展榮、方力行,(1996),濕地的界定及其功能,台灣濕地雜誌,第4期。
林瑩峰、荊樹人、賴建志、黃盈慈、李博霖 (2014),人工溼地的氧化亞氮排放,環境工程會刊。
邱文彥等(1998),「高雄縣鳥松濕地公園規劃」,高雄縣政府委託研究計畫報告,高雄。
郭明翰(2020),廢水處理型人工溼地降低溫室氣體排放之研究-沉積物與碳匯間關係之分析。國立中山大學海洋環境及工程學系研究所碩士論文,高雄市。
荒野保護協會 新竹分會,2021。
陳有祺(2005),生態濕地工程,滄海書局。
蔡福水(2007)。台灣水庫之優養化指標評析。國立中山大學環境工程研究所碩士論文,高雄市。
簡淑娟(2005)。人工溼地系統處理污水污染物去除和氧化還原電位關係之探討。嘉南藥理科技大學環境工程與科學系碩士班碩士論文,台南市。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code