Responsive image
博碩士論文 etd-0607121-141322 詳細資訊
Title page for etd-0607121-141322
論文名稱
Title
使用機器人與物聯網玩具建置幼兒情境式的語言學習環境
Developing a contextual language learning environment for children utilizing robots and IoT-based toys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-06-16
繳交日期
Date of Submission
2021-07-07
關鍵字
Keywords
教育機器人、機器人輔助語言學習、物聯網玩具、機器人遊戲學習環境、情境式語言學習環境
educational robot, robot assisted language learning, IoT-based toys, robot game-based learning environment, contexutal language learning environment
統計
Statistics
本論文已被瀏覽 411 次,被下載 0
The thesis/dissertation has been browsed 411 times, has been downloaded 0 times.
中文摘要
本研究就教育機器人的基本用途進行了三項詳細研究。該研究分三階段進行,第一階段先研究教育機器人的重要需求分析。 第二階段研究情境式機器人與物聯網玩具學習系統的設計,開發與評估。第三階段研究如何設計不同的學習支援機制來幫助學習者克服在進行機器人與物聯網玩具學習活動過程中所遇到的問題。
第一個研究主題為教育機器人的重要應用。由於研究人員和教育工作者對教育機器人的使用尚不清楚,因此本研究調查了使用教育機器人的需求,並找出教育機器人在各級教育中的重要應用,目的是提供一個教育機器人應用與發展的學術地圖。本研究使用三種方法進行調查,包括系統性文獻回顧、專家訪談和線上教師問卷。研究結果顯示,教育機器人的前五項重要應用為:語言教育、機器人教育、機器人助教、社會和特殊教育以及通過反饋的引導學習。結果還表明,幼兒和國小兒童族群對教育機器人的需求最高,這兩個群體的應用預計在不久的將來可以被實現。根據第一階段的結果,本研究選定使用教育機器人來促進兒童的語言學習,並提出了一個由機器人和物聯網 (IoT) 傳感器支持的學習模型。
研究二旨在開發機器人和基於物聯網的玩具的學習系統,讓非科技背景的使用者可以輕易的將機器人融入於教育。本研究採用設計研究法來調查這個編輯系統的需求、關鍵特徵和可用性。包括外語教師、家長、非科技背景的使用者和系統開發者,共十二名參與者,自願地參與了這項研究,通過需求收集、系統設計、系統測試和改進的迭代共同開發和評估創作系統。整合系統的開發共歷經四次次迭代,每次迭代均為十八週.整合系統包括了一個機器人、物聯網感測器和腳本編輯系統.研究結果找出了十一項重要的教學需求,指出在開發系統時應該注意到兒童語言學習、兒童認知發、兒童機器人互動以及實做問題的需求。我們也呈現出此整合系統的不同版本,並且從系統修改中歸納出重要的設計原則。研究結果顯示,系統有效性、實用性和效率問題是最常被發現的問題。
第三個研究主題為機器人和基於物聯網的玩具促進的學習支持對兒童語言學習的影響。研究三旨在探索基於機器人和物聯網玩具的情境式學習環境中的學習支持機制對兒童語言學習的影響。本研究進行了一個前導測試來收集在這種學習環境中經常出現的學習障礙。並且開發了五種學習支持機制來幫助學習者克服學習障礙,包括:使用標誌性手勢傳達任務描述的含義、邊說話邊做手勢增強機器人的社會臨在感、播放即時音效作為立即回應、為學習者提供鷹架提示找出正確答案,以及監控學習者的分心行為。研究結果顯示,學習支持機制對兒童的語言學習成效和減少兒童學習障礙均有正面影響。
Abstract
This study conducted three intendent studies regarding the essential use of educational robots (ER). The research was conducted in three stages with three independent studies.
Study 1 explored the needs of the use of educational robot and identified the essential use of robots for all levels of education, with its’ aim to provide a road map for the design and development of educational robots. The investigation was conducted through three approaches: systematic literature review, expert interviews, and online instructor surveys. The results showed the following to be the top five essential applications for educational robots: language education, robotics education, teaching assistance, social and special education, and guided learning through feedback. The results also indicated that preschool and primary school group hold the highest demands for educational robots and that applications of these two groups were expected to be implemented in near future. Informed by the results yield from stage 1, this study targeted at using robot to facilitate language learning and proposed a new learning model supported by robots and Internet of Things (IoT) sensors.
Study 2 aimed to develop an authoring tool of robots and IoT-based toys, allowing the non-technical professionals to incorporate robots in education. This study adopted a design-based research approach to investigate the pedagogical needs, the critical features and usability of such an authoring system. An authoring system, consisting of IoT-based toys, a robot and a script editor, was finally developed taking four cycles of iterative improvements in 18 weeks. Eleven pedagogical needs concerning children’s language and cognitive development, better children-robot interaction and practical issues were identified. The modifications made across different versions of the authoring system were presented in detail.
Study 3 aimed to explore the design of learning support mechanisms that should be embedded in a contextual learning environment supported by robot and IoT-based toys, and to evaluate the impact of learning support on children’s learning. This study conducted a pilot test to collect the learning obstacles often occur in such learning environment. 5 learning support mechanisms were developed to assist learners overcome learning obstacles. The results showed that the learning support mechanisms have positive impact on children’ language learning performance and reducing children’s learning obstacles.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘 要 iii
Abstract iv
Table of Content v
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1. Research background 1
1.2. Research purposes and stages 4
1.3. Proposing a contextual learning environment supported by robots and IoT-based toys 6
1.4. The conceptual model of a contextual learning environment support by robots and IoT-based toys 8
1.5 The core components of a contextual learning environment supported by robots and IoT-based toys 11
Chapter 2 Literature Review 13
2.1. The Use of Educational Robots 13
2.2. Robot Assisted Language Learning 20
2.3. Design-Based Approach to the Development of an Authoring System 21
2.4. The Usability of the Authoring System 22
2.5. Contextual Language Learning Environment 23
2.6. Learning problems in Robot Based Learning Practices 24
2.7. Pedagogical Ideas Underpinning Learning Support for Robot Assisted Learning 25
Chapter 3 Study 1The Essential Applications of Educational Robots 27
3.1. Research purpose 27
3.2. Research Method 28
3.2.1. Data collection 29
3.2.2. Data analysis 33
3.2.3. Data validation 36
3.3. Results & Discussion 37
3.3.1. The essential applications of educational robots 37
3.3.2. The 14 applications and age groups 41
3.3.3. The essential applications to be realized in the short term, mid-term and long term 49
3.4. Summary 51
Chapter 4 Study 2 The Development and Modifications of Authoring Tools for Robots and IoT-based Toys 52
4.1. Research purposes 52
4.2. An Overview of the Developmental Phases of the Authoring Tool 54
4.2.1. Participants 55
4.2.2. Data Collection and Analysis 56
4.3. The Design of the Authoring System with Robots and IoT-based Toys 59
4.3.1. The Layout of Desired Learning Scenario 59
4.3.2. An Overview of the Authoring Tool 60
4.3.3. The System Design of the Script Editor 61
4.3.4. An Example of EFL Learning Activity Designed Utilizing the Authoring System of Robot and IoT Toys 62
4.4. Results 64
4.4.1. Pedagogical Needs in Integrating Robots and IoT-based Toys 64
4.4.2. The Modifications of the Authoring System Made to Meet the Pedagogical Needs 68
4.4.3. The Usability of the Authoring System 72
4.5. Summary 77
Chapter 5 Study 3 The Impacts of Learning Support Facilitated by Robots and IoT-based Toys on Children’s Language Learning 80
5.1. Research purpose 80
5.2. The design of Learning Support Facilitated by a R&T Learning System 83
5.2.1. The pilot study 84
5.2.2. The design of learning support 87
5.3. Method 91
5.3.1. The participants 91
5.3.2. Experiment Procedure 92
5.3.3. Data Collection and Analysis 94
5.3.4. Instrument 96
5.4. Results 97
5.4.1. The impact of learning support on children’s language learning performance 97
5.4.2. The impact of learning support on the occurrences of learning obstacles 99
5.5. Summary 101
Chapter 6 Discussion 103
6.1. The essential applications of educational robots 103
6.2. The development of authoring tool for robots and IoT-based toys 104
6.3. The effects of learning support on children’s language learning 108
Chapter 7 Conclusion 112
7.1. Summary of this study 112
7.2. Contribution and Implications 114
7.3. Limitations and directions for future study 118
Reference 122
Appendix A. Survey questionnaire for the elderly group 134
Appendix B R &T Learning System 136
Appendix C example of Pre-test questions 137

參考文獻 References

Abrahamsson, P., Salo, O., Ronkainen, J. &Warsta, J. (2002) Agile software development methods: Review and analysis. VTT publication.
Adamides, G., Christou, G., Katsanos, C., Xenos, M., & Hadzilacos, T. (2014). Usability guidelines for the design of robot teleoperation: A taxonomy. IEEE Transactions on Human-Machine Systems, 45(2), 256-262.
Alemi, M., Meghdari, A., & Ghazisaedy, M. (2015). The impact of social robotics on L2 learners’ anxiety and attitude in English vocabulary acquisition. International Journal of Social Robotics, 7(4), 523-535.
Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63-71.
Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1), 16-25.
Bakker, A., & Van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In C. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 429-466): Springer.
Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of research on technology in education, 39(3), 229-243.
Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM, 42(6), 85-92.
Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science robotics, 3(21), eaat5954.
Belpaeme, T., Vogt, P., Van den Berghe, R., Bergmann, K., Göksun, T., De Haas, M., . . . Oudgenoeg-Paz, O. (2018). Guidelines for designing social robots as second language tutors. International Journal of Social Robotics, 10, 325-341.
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.
Berns, R. G., & Erickson, P. M. (2001). Contextual teaching and learning: Preparing students for the new economy (Vol. 5). Columbus, OH:National Dissemination Center for Career Teaching Education.
Calo, R. (2014). The case for a federal robotics commission. Brookings.


Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Journal of Educational Technology & Society, 13(2), 13-24.
Chen, G.D., Nurkhamid & Wang, C.Y. (2011). A survey on storytelling with robots. In M. Chang, W.Y. Hwang, M. P. Chen, & W. Muller (Eds), Edutainment Paper presented at the International Conference on Technologies for E-Learning and Digital Entertainment.
Chen, Z. H., Chen, H. H. J., & Dai, W. J. (2018). Using narrative-based contextual games to enhance language learning: A case study. Journal of Educational Technology & Society, 21(3), 186-198.
Cheng, Y. W., Sun, P. C., & Chen, N. S. (2018). The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & Education, 126, 399-416.
Cheng, Y. W., Wang, Y., Yang, Y. F., Yang, Z. K., & Chen, N. S. (2020). Designing an authoring system of robots and IoT-based toys for EFL teaching and learning. Computer Assisted Language Learning, 34(1-2), 6-34.

Chiang, Y. H. V., Zheng, Y. J., Cheng, Y. W., & Chen, N. S. (2020, July). Analyzing learners’ English learning process involving educational robots and IoT based toys through the lens of zone of proximal development. In 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT) (pp. 213-215). IEEE.
Collective, D. B. R. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8.
Contu, A., & Willmott, H. (2003). Re-embedding situatedness: The importance of power relations in learning theory. Organization science, 14(3), 283-296.
Crompton, H., Gregory, K., & Burke, D. (2018). Humanoid robots supporting children’s learning in an early childhood setting. British Journal of Educational Technology, 49(5), 911-927.
Dagnino, F. M., Dimitriadis, Y. A., Pozzi, F., Asensio‐Pérez, J. I., & Rubia‐Avi, B. (2018). Exploring teachers’ needs and the existing barriers to the adoption of Learning Design methods and tools: A literature survey. British Journal of Educational Technology, 49(6), 998-1013.
Davtyan, R. (2014). Contextual learning. Paper presented at the Asee 2014 Zone I Conference.
Eun, B., & Lim, H.S. (2009). A sociocultural view of language learning: The importance of meaning-based instruction. TESL Canada Journal, 27(1), 13-26.
Felicia, A., & Sharif, S. (2014). A Review on Educational Robotics as Assistive Tools For Learning Mathematics and Science. International Journal of Computer Science Trends and Technology (IJCST), 2(2), 62-84.
Fenwick, T. J. (2001). Experiential Learning: A Theoretical Critique from Five Perspectives. Information Series No. 385.
Getenet, S. (2019). Using design-based research to bring partnership between researchers and practitioners. Educational Research, 61(4), 482-494.
Girotto, V., Lozano, C., Muldner, K., Burleson, W., & Walker, E. (2016, May). Lessons learned from in-school use of rtag: A robo-tangible learning environment. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 919-930).
Gordon, G., Spaulding, S., Westlund, J. K., Lee, J. J., Plummer, L., Martinez, M., ... & Breazeal, C. (2016, March). Affective personalization of a social robot tutor for children’s second language skills. In Proceedings of the AAAI conference on artificial intelligence (Vol. 30, No. 1).
Han, J. (2012). Emerging technologies: Robot assisted language learning. Language Learning & Technology, 16(3), 1-9.
Hwang, W. Y., Shih, T. K., Ma, Z. H., Shadiev, R., & Chen, S. Y. (2016). Evaluating listening and speaking skills in a mobile game-based learning environment with situational contexts. Computer Assisted Language Learning, 29(4), 639-657.
Iacovides, I., Cox, A. L., McAndrew, P., Aczel, J., & Scanlon, E. (2015). Game-play breakdowns and breakthroughs: exploring the relationship between action, understanding, and involvement. Human–computer interaction, 30(3-4), 202-231.
Inkster, M., Wellsby, M., Lloyd, E., & Pexman, P. M. (2016). Development of embodied word meanings: Sensorimotor effects in children’s lexical processing. Frontiers in psychology, 7, 317.
Kanero, J., Geçkin, V., Oranç, C., Mamus, E., Küntay, A. C., & Göksun, T. (2018). Social robots for early language learning: Current evidence and future directions. Child Development Perspectives, 12(3), 146-151.
Karim, M. E., Lemaignan, S., & Mondada, F. (2015, June). A review: Can robots reshape K-12 STEM education?. In 2015 IEEE international workshop on Advanced robotics and its social impacts (ARSO) (pp. 1-8). IEEE.
Kennedy, J., Baxter, P., & Belpaeme, T. (2015). Comparing robot embodiments in a guided discovery learning interaction with children. International Journal of Social Robotics, 7(2), 293-308.
Kharrufa, A., Balaam, M., Heslop, P., Leat, D., Dolan, P., & Olivier, P. (2013, April). Tables in the wild: lessons learned from a large-scale multi-tabletop deployment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1021-1030).
Kim, Y., & Smith, D. (2017). Pedagogical and technological augmentation of mobile learning for young children interactive learning environments. Interactive Learning Environments, 25(1), 4-16.
Klassner, F., & Anderson, S. D. (2003). Lego MindStorms: Not just for K-12 anymore. IEEE Robotics & Automation Magazine, 10(2), 12-18.
Kory-Westlund, J. M., & Breazeal, C. (2019). A long-term study of young children's rapport, social emulation, and language learning with a peer-like robot playmate in preschool. Frontiers in Robotics and AI, 6, 81.
Lan, Y. J. (2015). Contextual EFL learning in a 3D virtual environment. Language Learning & Technology, 19(2), 16-31.
Lan, Y. J., Botha, A., Shang, J., & Jong, M. S.-Y. (2018). Guest Editorial: Technology enhanced contextual game-based language learning. Journal of Educational Technology & Society, 21(3), 86-89.

Lan, Y. J., Wei, H. H., & Chiu, Y. L. (2014, January). Virtual English village: A task-based English learning platform in Second Life. In 22nd International Conference on Computers in Education, ICCE 2014 (pp. 625-629). Asia-Pacific Society for Computers in Education.
Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G., Sagong, S., & Kim, M. (2011). On the effectiveness of robot-assisted language learning. ReCALL, 23(1), 25-58.
Leyzberg, D., Spaulding, S., Toneva, M., & Scassellati, B. (2012). The physical presence of a robot tutor increases cognitive learning gains. In Proceedings of the annual meeting of the cognitive science society (Vol. 34, No. 34).
Lin, C. J., Hwang, G. J., Fu, Q. K., & Chen, J.-F. (2018). A flipped contextual game-based learning approach to enhancing EFL students’ English business writing performance and reflective behaviors. Journal of Educational Technology & Society, 21(3), 117-131.
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of physiology-Paris, 102(1-3), 59-70.
Mauch, E. (2001). Using technological innovation to improve the problem-solving skills of middle school students: Educators' experiences with the LEGO mindstorms robotic invention system. The Clearing House, 74(4), 211-213.
McKenney, S., & Reeves, T. C. (2013). Systematic review of design-based research progress: Is a little knowledge a dangerous thing? Educational Researcher, 42(2), 97-100.
Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788-804.
Mitnik, R., Nussbaum, M., & Recabarren, M. (2009). Developing cognition with collaborative robotic activities. Journal of Educational Technology & Society, 12(4), 317.
Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1, 1-7.
Mutlu, B., Forlizzi, J., & Hodgins, J. (2006, December). A storytelling robot: Modeling and evaluation of human-like gaze behavior. In 2006 6th IEEE-RAS International Conference on Humanoid Robots (pp. 518-523). IEEE.
Nielsen, J. (1994). Usability engineering: Elsevier.
Nieveen, N., & Folmer, E. (2013). Formative evaluation in educational design research. Design Research, 153, 152-169.

Nourbakhsh, I. R., Crowley, K., Bhave, A., Hamner, E., Hsiu, T., Perez-Bergquist, A., . . . Wilkinson, K. (2005). The robotic autonomy mobile robotics course: Robot design, curriculum design and educational assessment. Autonomous Robots, 18(1), 103-127.
Öttl, B., Dudschig, C., & Kaup, B. (2017). Forming associations between language and sensorimotor traces during novel word learning. Language and Cognition, 9(1), 156-171.
Ray, S. (2012). Using Language in the Community for Enhancing. Language and language teaching, 1(1), 12-17.
Robotics, E. U. (2014). Strategic research agenda for robotics in Europe 2014–2020. IEEE Robot. Autom. Mag, 24, 171.
Selwyn, N. (2008). From state‐of‐the‐art to state‐of‐the‐actual? Introduction to a special issue. In: Taylor & Francis.
Serholt, S. (2018). Breakdowns in children's interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250-264.
Spolaôr, N., & Benitti, F. B. V. (2017). Robotics applications grounded in learning theories on tertiary education: A systematic review. Computers & Education, 112, 97-107.
Standard, I. (1998). Ergonomic requirements for office work with visual display terminals (vdts)–part 11: Guidance on usability. ISO Standard 9241-11: 1998. International Organization for Standardization.
Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2), 148-163.
Vanderhoven, E., Schellens, T., Vanderlinde, R., & Valcke, M. (2016). Developing educational materials about risks on social network sites: a design based research approach. Educational technology research and development, 64(3), 459-480.
Vogt P, de Haas M, de Jong C, Baxter P and Krahmer E (2017) Child-Robot Interactions for Second Language Tutoring to Preschool Children. Front. Hum. Neurosci. 11:73.
Vogt, P., van den Berghe, R., de Haas, M., Hoffman, L., Kanero, J., Mamus, E., ... & Pandey, A. K. (2019, March). Second language tutoring using social robots: a large-scale study. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 497-505). IEEE.
Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes: Harvard university press.
Vygotsky, L. S. (2012). Thought and language. MIT press.
Weiss, A., Bernhaupt, R., & Tscheligi, M. (2011). The USUS evaluation framework for user-centered HRI. New Frontiers in Human–Robot Interaction, 2, 89-110.
Wellsby, M., & Pexman, P. M. (2014). Developing embodied cognition: Insights from children’s concepts and language processing. Frontiers in psychology, 5,506.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
Wood, D., & Wood, H. (1996). Vygotsky, tutoring and learning. Oxford review of Education, 22(1), 5-16.
Xue, J., Marmolejo-Ramos, F., & Pei, X. (2015). The linguistic context effects on the processing of body–object interaction words: An ERP study on second language learners. Brain research, 1613, 37-48.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-07-07
校外 Off-campus:開放下載的時間 available 2024-07-07

您的 IP(校外) 位址是 44.200.27.215
現在時間是 2024-04-16
論文校外開放下載的時間是 2024-07-07

Your IP address is 44.200.27.215
The current date is 2024-04-16
This thesis will be available to you on 2024-07-07.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code