Responsive image
博碩士論文 etd-0607121-193254 詳細資訊
Title page for etd-0607121-193254
論文名稱
Title
異營性硝化好氧脫硝菌對廢水中氮營養鹽去除效果之研究-以芽孢桿菌屬為例
Removal Effects for Heterogeneous Nitrifying and Aerobic Denitrifying Bacteria on Nitrogenous Nutrient in Wastewater Treatment – A case study of Bacillus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-06-29
繳交日期
Date of Submission
2021-07-07
關鍵字
Keywords
芽孢桿菌、生物脫氮、異營性硝化、好氧脫硝、菌種鑑定
Bacillus, biological denitrification, heterogeneous nitrification, aerobic denitrification, bacteria species identification
統計
Statistics
本論文已被瀏覽 236 次,被下載 135
The thesis/dissertation has been browsed 236 times, has been downloaded 135 times.
中文摘要
異營性硝化-好氧脫硝菌的應用與技術是近年來才受到討論的新型生物脫氮技術。打破傳統廢污水處理中,只能以好氧硝化與厭氧脫硝機制來降解水體中的氮營養鹽,此種類細菌能在有氧的環境下,同步進行硝化與脫硝,在除氮的同時,亦可去除部分的有機物,除此之外此種細菌亦普遍具有生長速率快及適應性強之特性,為生物脫氮開闢了一條新的途徑。
本研究採集位於高雄市之九番埤濕地周圍排放口區域之底泥,並以塗抹法進行塗佈培養24hr,再分離純化篩選得具有較佳優秀脫氮效果的菌株N1。通過細菌菌體之形態觀察、生理生化鑒定及16SrDNA 序列分析步驟,確認為貝萊斯芽孢桿菌(Bacillus velezensis)。
對菌株N1進行進一步的水質淨化效果分析,結果顯示,在含有氨氮(NH4+) 10 mg/L、硝酸鹽氮(NO3--N) 10 mg/L的人工污水中,菌株N1在飽和溶氧環境條件下,具有異營性硝化之作用,對NH4+-N的去除率可達到48%;而在厭氧環境條件下所進行之脫硝作用,對NO3--N的去除率亦可達到99%;當DO為2 ~ 4 mg/L時,則同時進行硝化作用與脫硝作用,對NH4+-N及NO3--N的去除率分別可達到31%及80%。顯示菌株N1適用於多種不同溶氧的環境條件,並能分別以NH4+和亞硝酸鹽(NO2−)作為氮源,而完成大部份的脫氮作用,且都具有一定之脫氮效果。但菌株N1在環境中的競爭能力則較差,在菌量充足的前提下,可以快速且有效的去除水體中之目標污染物,但一旦達成目的後,則迅速死亡,此一特性將可確保環境生態能迅速恢復原來之生態系,而避免產生二次性外來物理之生物性污染,有生物製劑之潛力。
Abstract
Using of heterogeneous nitrification-aerobic denitrification bacteria for biological denitrification in wastewater treatments has been widely discussed recently.Different from traditional wastewater treatments which, only aerobic nitrification and anaerobic denitrification mechanisms are applied to remove nitrogenous nutrients from water bodies, such species of can simultaneously perform nitrification and denitrification in an aerobic environment. Meanwhile,the bacteria can also remove part of organic matters, and usually has a fast growth rate and strong adaptability, providing an alternative technology for biological denitrification.
In this study, first the sediment, from Jiupanpi Wetland park in Kaohsiung City was collected for culturing the bacteria. After coating culture, the bacteria species of strain N1 with excellent denitrification effect was isolated. Through morphological observation, physiological and biochemical identification and 16SrDNA analysis, the bacteria isolated was confirmed to be Bacillus velezensis.
The water purification effect of strain N1 was investigated. In artificial sewage containing 10 mg/L of ammonia nitrogen (NH4+-N) and 10 mg/L of nitrate nitrogen (NO3-), strain N1 could achieve heterogeneous nitrification under saturated dissolved oxygen environment, and exhibited the removal rate of NH4+-N equal to 48%, while under anaerobic environment, the removal rate of NO3--N was found equal to 99%;. When DO was controlled in a range of 2 ~ 4 mg/L,that both nitrification and denitrification effects were achieved, and the removal rates of NH4+-N and NO3--N were equal to 31% and 80%, respectively. The experimental results showed that the strain N1 was suitable for a variety of different dissolved oxygen environmental conditions, and could use ammonia nitrogen and nitrite as nitrogen sources respectively. The strain N1 was found having a poor competitive ability against other microorganisms in the environment. However when the bacteria were in great amounts, they could quickly and effectively remove the target pollutants in the water body, and then they die quickly, which could ensure that the ecosystem could be removed to its original appearance quickly. Thus, such species of bacteria have potential to be produced as biological agents
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3研究架構 2
第二章 文獻回顧 4
2.1環境中的氮元素 4
2.1.1水體中的氮 4
2.1.2含氮水體的危害 4
2.1.3氮的轉化方式 6
2.1.4傳統的脫氮技術 7
2.2好氧脫硝脫氮技術 8
2.2.1好氧脫硝菌研究發展 8
2.2.2好氧脫硝反應機制 9
2.2.3好氧脫硝菌的影響因素 11
2.2.4好氧脫硝菌的應用優勢 13
2.3芽孢桿菌 13
2.3.1枯草芽孢桿菌Bacillus subtilis 14
2.3.2液化澱粉芽孢桿菌Bacillus amyloliquefaciens 15
2.3.3貝萊斯芽孢桿菌Bacillus velezensis 15
第三章 材料與方法 17
3.1材料 17
3.1.1樣品來源 17
3.1.2實驗材料與器材 17
3.1.3實驗模槽設計 18
3.2方法 18
3.2.1菌株的分離與純化 18
3.2.2菌株的生化測試 19
3.2.3菌株的水質淨化搖瓶試驗 20
3.2.4菌株菌種鑑定 21
3.2.5菌株的水質淨化效果分析 21
3.2.6菌株N1的環境適應性實驗 25
第四章 結果與討論 26
4.1底泥菌株的分離結果 26
4.2菌株的生化測試結果 26
4.3菌株的水質淨化搖瓶試驗結果 27
4.4菌株鑑定結果 28
4.4.1菌株A41形態觀察 28
4.4.2菌株A41測序結果 30
4.4.3菌株N1形態觀察 31
4.4.4菌株N1測序結果 31
4.5菌株的水質淨化分析結果 33
4.5.1 Bacillus subtilis Y1336水質淨化結果 33
4.5.2 Bacillus amyloliquefaciens A41水質淨化結果 41
4.5.3 Bacillus velezensis N1水質淨化結果 49
4.5.4 N1的環境適應性實驗 58
第五章 結論與建議 60
5.1結論 60
5.2建議 61
參考文獻 63
附錄A-BLAST生物序列比對結果 71
附錄B-水質檢測原始資料 76

參考文獻 References
Anderson, I. C., and Levine, J. S. (1986). Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Applied Environmental Microbiology, 51(5), 938-945.

Barman, P., Kati, A., Mandal, A. K., Bandyopadhyay, P., and Mohapatra, P. K. D. (2017). Biopotentiality of Bacillus cereus PB45 for nitrogenous waste detoxification in ex situ model. Aquaculture international, 25(3), 1167-1183.

Bernat, K., and Wojnowska-Baryła, I. (2007). Carbon source in aerobic denitrification. Biochemical Engineering Journal, 36(2), 116-122.

Caldeira, A. T., Feio, S., Arteiro, J., Coelho, A., and Roseiro, J. (2008). Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. Journal of Applied Microbiology, 104(3), 808-816.

Ceuppens, S., Rajkovic, A., Heyndrickx, M., Tsilia, V., Van De Wiele, T., Boon, N., and Uyttendaele, M. (2011). Regulation of toxin production by Bacillus cereus and its food safety implications. Critical reviews in microbiology, 37(3), 188-213.

Chen, J., Gu, S., Hao, H., and Chen, J. (2016). Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Applied microbiology biotechnology Bioengineering, 100(22), 9787-9794.

Dadrasnia, A., Usman, M. M., Lim, K. T., Velappan, R. D., Shahsavari, N., Vejan, P., and Ismail, S. (2017). Microbial Aspects in Wastewater Treatment–A Technical. Environmental Pollution Protection, 2(2), 75-84.

Dunlap, C. A., Kim, S.-J., Kwon, S.-W., and Rooney, A. P. (2015). Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. International journal of systematic evolutionary microbiology, 65(7), 2104-2109.

Earl, A. M., Losick, R., and Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in microbiology, 16(6), 269-275.

Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., Yan, D., Liu, Y., Yang, D., and Xing, J. (2013). Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnology letters, 35(12), 2045-2049.

Huang, F., Pan, L., Lv, N., and Tang, X. (2017). Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. Journal of Bioscience Bioengineering, 124(5), 564-571.

Huang, F., Pan, L., Lv, N., Tang, X., and bioengineering. (2017). Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. Journal of Bioscience Bioengineering, 124(5), 564-571.


Intrasungkha, N., Keller, J., and Blackall, L. L. (1999). Biological nutrient removal efficiency in treatment of saline wastewater. Water Science Technology, 39(6), 183-190.

Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., and Zhang, H. (2015). Aerobic denitrification: a review of important advances of the last 30 years. Biotechnology Bioprocess Engineering, 20(4), 643-651.

Jones, C. M., Stres, B., Rosenquist, M., and Hallin, S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular biology evolution, 25(9), 1955-1966.

Joo, H.-S., Hirai, M., and Shoda, M. (2005). Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. Journal of Bioscience Bioengineering, 100(2), 184-191.

Khalid, R., Patrick Jr, W., and Gambrell, R. (1978). Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuarine Coastal Marine Science, 6(1), 21-35.

Kim, J. K., Park, K. J., Cho, K. S., Nam, S.-W., Park, T.-J., and Bajpai, R. (2005). Aerobic nitrification–denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96(17), 1897-1906.



Kim, M., Jeong, S.-Y., Yoon, S. J., Cho, S. J., Kim, Y. H., Kim, M. J., Ryu, E. Y., and Lee, S.-J. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. Journal of Bioscience Bioengineering, 106(5), 498-502.

Kincannon, D., and Gaudy Jr, A. (1968). Response of biological waste treatment systems to changes in salt concentrations. Biotechnology Bioengineering, 10(4), 483-496.

Liang, Q., Zhang, X., Lee, K. H., Wang, Y., Yu, K., Shen, W., Fu, L., Shu, M., Li, W., and Biotechnology. (2015). Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4. World Journal of Microbiology Biotechnology Bioengineering, 31(11), 1711-1718.

Oncu, S., Oncu, S., and Sakarya, S. (2003). Anthrax–an overview. Medical science monitor, 9(11), RA276-RA283.

Patureau, D., Bernet, N., and Moletta, R. (1997). Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Commonas sp. strain SGLY2. Water research, 31(6), 1363-1370.

Rajta, A., Bhatia, R., Setia, H., and Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology, 128(5), 1261-1278.


Ren, Y.-X., Yang, L., and Liang, X. (2014). The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171, 1-9.

Richardson, D., Wehrfritz, J.-M., Keech, A., Crossman, L., Roldan, M., Sears, H., Butler, C., Reilly, A., Moir, J., and Berks, B. (1998). The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. Biochemical Society Transactions, 26(3), 401-408.

Roberts, R. J., WILSON, G. A., and YOUNG, F. E. (1977). Recognition sequence of specific endonuclease Bam HI from Bacillus amyloliquefaciens H. Nature, 265(5589), 82-84.

Robertson, L. A., and Kuenen, J. G. (1984). Aerobic denitrification: a controversy revived. Archives of Microbiology, 139(4), 351-354.

Rout, P. R., Bhunia, P., and Dash, R. R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244, 484-495.

Ruiz-Garcia, C., Bejar, V., Martinez-Checa, F., Llamas, I., Quesada, E., and Microbiology, E. (2005). Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. International Journal of Systematic, 55(1), 191-195.

Savant, N., and De Datta, S. (1982). Nitrogen transformations in wetland rice soils. Advances in Agronomy, 35, 241-302.


Savant, N., De Datta, S., and Craswell, E. (1982). Distribution patterns of ammonium nitrogen and 15N uptake by rice after deep placement of urea supergranules in wetland soil. Soil Science Society of America Journal, 46(3), 567-573.

Schaechter, M. (2009). Encyclopedia of microbiology. Academic Press.

Sivasakthi, S., Usharani, G., and Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African journal of agricultural research, 9(16), 1265-1277.

Song, Z.-F., An, J., Fu, G.-H., and Yang, X.-L. (2011). Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture, 319(1-2), 188-193.

Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, 56(4), 845-857.

Tamang, J. P., Watanabe, K., and Holzapfel, W. H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in microbiology, 7, 377.



Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y., and Shen, Q. (2013). Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest management science, 69(11), 1245-1252.

Tanaka, K., Takanaka, S., and Yoshida, K.-i. (2014). A second-generation Bacillus cell factory for rare inositol production. Bioengineered, 5(5), 331-334.

Wang, L.-T., Lee, F.-L., Tai, C.-J., and Kuo, H.-P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International journal of systematic evolutionary microbiology, 58(3), 671-675.

Yang, X.-P., Wang, S.-M., Zhang, D.-W., and Zhou, L.-X. (2011). Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1. Bioresource Technology, 102(2), 854-862.

Ye, M., Tang, X., Yang, R., Zhang, H., Li, F., Tao, F., Li, F., and Wang, Z. (2018). Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS chemical biology, 13(3), 500-505.

Zhang, J., Wu, P., Hao, B., and Yu, Z. (2011). Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresource Technology, 102(21), 9866-9869.


Zhang, Q.-L., Liu, Y., Ai, G.-M., Miao, L.-L., Zheng, H.-Y., and Liu, Z.-P. (2012). The characteristics of a heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresource Technology, 108, 35-44.

Zhang, X., Fu, L., Deng, B., Liang, Q., Zheng, J., Sun, J., Zhu, H., Peng, L., Wang, Y., and Wenying, S. (2013). Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World Journal of Microbiology Biotechnology Bioengineering, 29(9), 1645-1653.

Zhao, B., He, Y. L., Hughes, J., and Zhang, X. F. (2010). Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresource Technology, 101(14), 5194-5200.

Zhao, P., Quan, C., Wang, Y., Wang, J., and Fan, S. (2014). Bacillus amyloliquefaciens Q‐426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of basic microbiology, 54(5), 448-456.

Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology molecular biology reviews, 61(4), 533-616.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code