Responsive image
博碩士論文 etd-0610119-150823 詳細資訊
Title page for etd-0610119-150823
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於食品中砷、碘及溴化合物之分析應用
Determination of arsenic, iodine and bromine compounds in foods using HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-09
繳交日期
Date of Submission
2019-07-10
關鍵字
Keywords
砷、感應耦合電漿質譜儀、碘、逆相層析、嬰兒奶粉、溴、食米
Rice, Bromine, Iodine, Arsenic, Infant formula, ICP-MS, Reversed-phase Chromatography
統計
Statistics
本論文已被瀏覽 5832 次,被下載 97
The thesis/dissertation has been browsed 5832 times, has been downloaded 97 times.
中文摘要
隨著科技的進步,逐步改善人類的生活與醫療衛生環境,使全球人口持續成長,現今世界人口大約76億人,到2050年時,世界人口推估將成長至98億,這使糧食需求增加一倍,為了因應糧食需求,增加農產品的種植,也增加了溫室氣體的產量破壞自然生態,進而影響食品安全。自然界的元素以不同形式存在,各物種的毒性及特性也不盡相同,透過物種分析能更幫助消費者了解食品安全。
第一部分研究以液相層析結合感應耦合電漿質譜儀分析食米中As(Ⅴ)、Monometylarsonic acid、As(Ⅲ)、Dimethy;arsenic acid和Arsenobetaine五種砷物種。實驗使用ZORBAX SB-Aq C18作為管柱,透過物種極性及電荷的差異,以等位沖堤方式快速的在4分鐘內分離五種砷物種,分離後通過感應耦合電漿質譜儀定量,為了減輕砷在偵測時的光譜干擾,以氧氣作為DRC反應氣體,將75As+反應成75As16O+,去除40Ar35Cl+及40Ca35Cl+等多原子離子干擾,同時利用碰撞聚焦提升訊號,使偵測極限介於0.005-0.006 ng mL-1。砷物種的滯留時間、波峰高度及波峰面積之相對偏差皆小於3.0%,且添加回收率皆介於98-102%之間,說明實驗方法的精確性與可行性。
第二部分研究利用逆相管柱串聯感應耦合電漿質譜儀測定嬰兒奶粉中無機碘離子與溴離子,以四丁基磷酸二氫銨作為離子對試劑,藉由相異的吸引力使I-、IO3-、Br-及BrO3-四種物種完整分離,並在最適化層析條件下以梯度沖堤方式在五分鐘內完全分離四種物種。為了能夠減輕樣品基質中同質量多原子離子的光譜干擾,以氧氣作為DRC反應氣體,有效降低背景訊號及偵測極限。連續注入碘及溴標準品進入HPLC-DRC-ICP-MS五次後,分析物訊號之波鋒面積和分析物訊號之高度的RSD皆小於4.4%。本實驗以7.5% (m/v) NaOH混合2.5% (m/v) Na2CO3作為萃取試劑,快速的在5分鐘完成萃取,並且成功以此萃取方法結合HPLC-DRC-ICP-MS應用於NIST SRM 8435 Whole Milk Powder及市售三種嬰兒奶粉中進行分離及偵測。
Abstract
Technological development, has enormously improved human life time which progressively leads to better sanitation around the global, which impacted to growth of human population. The current world population of 7.6 billion is expected to achieve 9.8 billion by 2050. Food production must double by 2050 to meet the demand of the world's growing population. Increase production would raise greenhouse gas levels, compromise ecosystems, and pollute our waters. The environmental challenges posed by agriculture are huge. We will require as much attention to our diets, and improving food security worldwide. Speciation of trace elements provides more specific information about real status and impact of given elements in a system. In addition, species identification is more beneficial to enhance food safety for consumers.
Here we proposed that, HPLC-ICP-MS for the determination of As(Ⅴ), MMA, As(Ⅲ), DMA and also AsB in various rice samples were systematically analyzed. To further improvement, the chromatographed was performed by reversed phase chromatography with ZORBAX SB-Aq C18 column. Besides, chromatographic separation of all these species were achieved in with 4 min in isocratic elution mode. The determination of arsenic by ICP-MS always suffer from interference of multiple ions originating from complicated matrix, which are mainly concerning 40Ar35Cl+, 40Ca35Cl+, etc. In order exclude these possibilities additional experimental setup were introduced, DRC-ICP-MS with oxygen as reaction gas transfer the mass to 75As16O+ which could be easily detected at m/z 91. The detection limit of arsenic species were in the range of 0.005-0.006 ng mL-1 which is lower than the others study. Reproducibility of retention time, peak height and peak area were better than 3.0%. In addition to, the spike recoveries in NIST SRM 1568a were in the range of 98-103% were obtained based on this proposed method.
Second part of the research were focused on ion-pair reversed phase chromatography coupled with ICP-MS for the determination of inorganic iodine and inorganic bromine in infant formula. The several other species of iodate, iodide, bromate and bromide were attained in less than 5 min using a gradient elution program and adding tetrabutylammonium phosphate as ion-pair agent. However, potentially interfering of 38Ar40ArH+ and 40Ar40ArH+ at the bromine were reduced by DRC system using O2 as reaction gas. To further enhancement, DRC system was successfully applied to reduce the iodine and bromine background. Taking in to the advantage, the relative standard deviation iodine and bromine mixture was better than 4.4%. Based on that, iodine and bromine were quantitatively leached with an 7.5% m/v NaOH mixed 2.5% m/v Na2CO3 at 90 ℃ during a period of 5 min. The proposed method has been applied to the determination of iodine and bromine in NIST SRM 8435 Whole Milk Powder reference material and three infant formula samples purchased from local market were quantified successfully.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x

第一章 液相層析結合感應耦合電漿質譜儀於食米中砷化合物之分析應用
壹、前言 1
一、研究背景 1
二、動態反應槽 3
貳、實驗部分 6
一、儀器裝置 6
二、藥品及溶液的配製 9
參、實驗過程 11
一、液相層析條件最適化探討 11
二、DRC-ICP-MS系統最適化探討 11
三、再現性 14
四、校正曲線與偵測極限的預估 14
五、真實樣品製備與分析 14
肆、結果與討論 19
一、液相層析分離條件最適化 19
二、ICP-MS系統條件最適化 30
三、再現性 39
四、校正曲線與偵測極限 39
五、萃取條件最適化 39
六、真實樣品分析 40
伍、結論 59
陸、參考文獻 60

第二章 液相層析結合感應耦合電漿質譜儀於嬰兒食品中碘及溴物種之分析應用
壹、前言 64
貳、實驗部分 67
一、儀器裝置與設備 67
二、藥品及溶液的配製 69
參、實驗過程 71
一、液相層析條件最適化探討 71
二、DRC-ICP-MS系統最適化探討 71
三、再現性 71
四、校正曲線與偵測極限的預估 72
五、真實樣品製備與分析 72
肆、結果與討論 77
一、液相層析分離條件最適化 77
二、DRC系統最適化 85
三、再現性 86
四、校正曲線與偵測極限 86
五、萃取條件最適化 92
六、真實樣品分析 98
伍、結論 106
陸、參考資料 107
參考文獻 References
第一章 液相層析結合感應耦合電漿質譜儀於食米中砷化合物之分析應用
1. Mandal, B. K.; Suzuki, K. T., Arsenic round the world: a review. Talanta 2002, 58, 201-235.
2. Ravenscroft, P.; Brammer, H.; Richards, K., Arsenic pollution: a global synthesis. John Wiley & Sons: 2009; Vol. 28.
3. Johnson, L. R.; Hiltbold, A. E., Arsenic Content of Soil and Crops Following Use of Methanearsonate Herbicides1. Soil Science Society of America Journal 1969, 33, 279-282.
4. Hughes, M. F.; Beck, B. D.; Chen, Y.; Lewis, A. S.; Thomas, D. J., Arsenic Exposure and Toxicology: A Historical Perspective. Toxicological Sciences 2011, 123, 305-332.
5. Chen, C.-J.; Hsu, L.-I.; Wang, C.-H.; Shih, W.-L.; Hsu, Y.-H.; Tseng, M.-P.; Lin, Y.-C.; Chou, W.-L.; Chen, C.-Y.; Lee, C.-Y.; Wang, L.-H.; Cheng, Y.-C.; Chen, C.-L.; Chen, S.-Y.; Wang, Y.-H.; Hsueh, Y.-M.; Chiou, H.-Y.; Wu, M.-M., Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and Applied Pharmacology 2005, 206, 198-206.
6. Zou, H.; Zhou, C.; Li, Y.; Yang, X.; Wen, J.; Hu, X.; Sun, C., Occurrence, toxicity, and speciation analysis of arsenic in edible mushrooms. Food Chemistry 2019, 281, 269-284.
7. Chou, C.-H.; Harper, C., Toxicological profile for arsenic. 2007.
8. 行政院農業委員會, 糧食供需年報. 2016.
9. 張雅婷,19款食米致癌物無機砷含量超標恐增致癌風險百佳:2款暫下架,香港01,Retrieved FebruaryOctober 27, 2018, from http://hbswk.hbs.edu/item.jhtml?id =5049&t=globalization
10. 中華民國107年5月8日衛生福利部衛授食字第1071300778號令 食品中污染物質及毒素衛生標準.
11. Meharg, A. A.; Williams, P. N.; Adomako, E.; Lawgali, Y. Y.; Deacon, C.; Villada, A.; Cambell, R. C. J.; Sun, G.; Zhu, Y.-G.; Feldmann, J.; Raab, A.; Zhao, F.-J.; Islam, R.; Hossain, S.; Yanai, J., Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environmental Science & Technology 2009, 43, 1612-1617.
12. Lemos Batista, B.; Nigar, M.; Mestrot, A.; Alves Rocha, B.; Barbosa Júnior, F.; Price, A. H.; Raab, A.; Feldmann, J., Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. Journal of Experimental Botany 2014, 65, 1467-1479.
13. Narukawa, T.; Suzuki, T.; Inagaki, K.; Hioki, A., Extraction techniques for arsenic species in rice flour and their speciation by HPLC–ICP-MS. Talanta 2014, 130, 213-220.
14. Pétursdóttir, Á. H.; Friedrich, N.; Musil, S.; Raab, A.; Gunnlaugsdóttir, H.; Krupp, E. M.; Feldmann, J., Hydride generation ICP-MS as a simple method for determination of inorganic arsenic in rice for routine biomonitoring. Analytical Methods 2014, 6, 5392-5396.
15. Nookabkaew, S.; Rangkadilok, N.; Mahidol, C.; Promsuk, G.; Satayavivad, J., Determination of Arsenic Species in Rice from Thailand and Other Asian Countries Using Simple Extraction and HPLC-ICP-MS Analysis. Journal of Agricultural and Food Chemistry 2013, 61, 6991-6998.
16. Yang, F.; Xie, S.; Liu, J.; Wei, C.; Zhang, H.; Chen, T.; Zhang, J., Arsenic concentrations and speciation in wild birds from an abandoned realgar mine in China. Chemosphere 2018, 193, 777-784.
17. Juskelis, R.; Li, W.; Nelson, J.; Cappozzo, J. C., Arsenic Speciation in Rice Cereals for Infants. Journal of Agricultural and Food Chemistry 2013, 61, 10670-10676.
18. 衛生福利部食品藥物管理署,米中無機砷之檢驗方法,2018
19. Narukawa, T.; Chiba, K.; Sinaviwat, S.; Feldmann, J., A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A 2017, 1479, 129-136.
20. Guo, W.; Hu, S.; Li, X.; Zhao, J.; Jin, S.; Liu, W.; Zhang, H., Use of ion–molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS. Talanta 2011, 84, 887-894.
21. Jackson, B. P.; Liba, A.; Nelson, J., Advantages of reaction cell ICP-MS on doubly charged interferences for arsenic and selenium analysis in foods. Journal of analytical atomic spectrometry 2015, 30, 1179-1183.
22. Le, X. C.; Lu, X.; Ma, M.; Cullen, W. R.; Aposhian, H. V.; Zheng, B., Speciation of Key Arsenic Metabolic Intermediates in Human Urine. Analytical Chemistry 2000, 72, 5172-5177.
23. Carioni, V. M. O.; McElroy, J. A.; Guthrie, J. M.; Ngwenyama, R. A.; Brockman, J. D., Fast and reliable method for As speciation in urine samples containing low levels of As by LC-ICP-MS: Focus on epidemiological studies. Talanta 2017, 165, 76-83.
24. Simon, S.; Tran, H.; Pannier, F.; Potin-Gautier, M., Simultaneous determination of twelve inorganic and organic arsenic compounds by liquid chromatography–ultraviolet irradiation–hydride generation atomic fluorescence spectrometry. Journal of Chromatography A 2004, 1024, 105-113.
25. 劉殷孝,液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用,國立中山大學,高雄市,2014.
26. 嚴可軒,液相層析結合化學蒸氣生成感應偶合電漿質譜儀於海藻及食用米中無機砷物種之分析應用,國立中山大學,高雄市,2016.
27. Rabieh, S.; Hirner, A. V.; Matschullat, J., Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). Journal of Analytical Atomic Spectrometry 2008, 23, 544-549.
28. Tanner, S. D.; Baranov, V. I.; Vollkopf, U., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part III. Optimization and analytical performance. Journal of Analytical Atomic Spectrometry 2000, 15, 1261-1269.
29. Komorowicz, I.; Sajnóg, A.; Barałkiewicz, D., Total Arsenic and Arsenic Species Determination in Freshwater Fish by ICP-DRC-MS and HPLC/ICP-DRC-MS Techniques. Molecules 2019, 24.
30. Zhao, F.; Liu, Y.; Zhang, X.; Dong, R.; Yu, W.; Liu, Y.; Guo, Z.; Liang, X.; Zhu, J., Enzyme-assisted extraction and liquid chromatography-inductively coupled plasma mass spectrometry for the determination of arsenic species in fish. Journal of Chromatography A 2018, 1573, 48-58.
31. Nan, K.; He, M.; Chen, B.; Chen, Y.; Hu, B., Arsenic speciation in tree moss by mass spectrometry based hyphenated techniques. Talanta 2018, 183, 48-54.
32. 鄭雅瑜,液相層析結合感應耦合電漿質譜儀於環境水樣與食米樣品中砷物種分析及酒品中含鉻化合物之分析應用,國立中山大學,高雄市,2015.
33. Terol, A.; Marcinkowska, M.; Ardini, F.; Grotti, M., Fast Determination of Toxic Arsenic Species in Food Samples Using Narrow-bore High-Performance Liquid-Chromatography Inductively Coupled Plasma Mass Spectrometry. Analytical Sciences 2016, 32, 911-915.
34. Zhu, Y. G.; Sun, G. X.; Lei, M.; Teng, M.; Liu, Y. X.; Chen, N. C.; Wang, L. H.; Carey, A. M.; Deacon, C.; Raab, A.; Meharg, A. A.; Williams, P. N., High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environmental Science & Technology 2008, 42, 5008-5013.
35. Guzmán Mar, J. L.; Hinojosa Reyes, L.; Mizanur Rahman, G. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry. Journal of Agricultural and Food Chemistry 2009, 57, 3005-3013.
36. Alava, P.; Van de Wiele, T.; Tack, F.; Du Laing, G., Extensive grinding and pressurized extraction with water are key points for effective and species preserving extraction of arsenic from rice. Analytical methods 2012, 4, 1237-1243.
37. D'Amato, M.; Aureli, F.; Ciardullo, S.; Raggi, A.; Cubadda, F., Arsenic speciation in wheat and wheat products using ultrasound-and microwave-assisted extraction and anion exchange chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2011, 26, 207-213.

第二章 液相層析結合感應耦合電漿質譜儀於嬰兒食品中碘及溴物種之分析應用
1. del Estado, B. O., Real Decreto 867/2008, de 23 de mayo, por el que se aprueba la reglamentación técnico-sanitaria específica de los preparados para lactantes y de los preparados de continuación. BOE: 2008.
2. Commission, C. A.; Commission, C. A., Standard for infant formula and formulas for special medical purposes intended for infants. Codex Stan 2007, 72.
3. Risher, J.; Keith, L. S., Iodine and inorganic iodides: human health aspects. World Health Organization: 2009.
4. van der Reijden, O. L.; Zimmermann, M. B.; Galetti, V., Iodine in dairy milk: Sources, concentrations and importance to human health. Best practice & research Clinical endocrinology & metabolism 2017, 31, 385-395.
5. Trumpff, C.; De Schepper, J.; Tafforeau, J.; Van Oyen, H.; Vanderfaeillie, J.; Vandevijvere, S., Mild iodine deficiency in pregnancy in Europe and its consequences for cognitive and psychomotor development of children: a review. Journal of trace elements in medicine and biology 2013, 27, 174-183.
6. Zimmermann, M. B., The impact of iodised salt or iodine supplements on iodine status during pregnancy, lactation and infancy. Public health nutrition 2007, 10, 1584-1595.
7. Semba, R. D.; Delange, F., Iodine in human milk: perspectives for infant health. Nutrition reviews 2001, 59, 269-278.
8. Barratt, T. M.; Walser, M., Extracellular fluid in individual tissues and in whole animals: the distribution of radiosulfate and radiobromide. The Journal of clinical investigation 1969, 48, 56-66.
9. McCall, A. S.; Cummings, C. F.; Bhave, G.; Vanacore, R.; Page-McCaw, A.; Hudson, B. G., Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 2014, 157, 1380-1392.
10. Van Leeuwen, F. R.; Sangster, B.; Hildebrandt, A. G., The toxicology of bromide ion. CRC critical reviews in toxicology 1987, 18, 189-213.
11. Heumann, K. G.; Rottmann, L.; Vogl, J., Elemental speciation with liquid chromatography–inductively coupled plasma isotope dilution mass spectrometry. Journal of Analytical Atomic Spectrometry 1994, 9, 1351-1355.
12. Leiterer, M.; Truckenbrodt, D.; Franke, K., Determination of iodine species in milk using ion chromatographic separation and ICP-MS detection. European Food Research and Technology 2001, 213, 150-153.
13. Chen, Z.; Megharaj, M.; Naidu, R., Determination of bromate and bromide in seawater by ion chromatography, with an ammonium salt solution as mobile phase, and inductively coupled plasma mass spectrometry. Chromatographia 2007, 65, 115-118.
14. Fernández, R. G.; Alonso, J. I. G.; Sanz-Medel, A., Coupling of ICP-MS with ion chromatography after conductivity suppression for the determination of anions in natural and waste waters. Journal of Analytical Atomic Spectrometry 2001, 16, 1035-1039.
15. Eickhorst, T.; Seubert, A., Germanium dioxide as internal standard for simplified trace determination of bromate, bromide, iodate and iodide by on-line coupling ion chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A 2004, 1050, 103-109.
16. Grinberg, P.; Sturgeon, R. E., Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2009, 64, 235-241.
17. 黃馨儀, 感應耦合電漿質譜儀於嬰兒食品中多重微量元素分析與碘及溴物種型態分析之應用. 國立中山大學, 高雄市. 2016.
18. Shelor, C. P.; Dasgupta, P. K., Review of analytical methods for the quantification of iodine in complex matrices. Analytica chimica acta 2011, 702, 16-36.
19. Gurau, M. C.; Lim, S.-M.; Castellana, E. T.; Albertorio, F.; Kataoka, S.; Cremer, P. S., On the mechanism of the Hofmeister effect. Journal of the American Chemical Society 2004, 126, 10522-10523.
20. Tanner, S. D.; Baranov, V. I.; Vollkopf, U., A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part III. For Part II see ref. 11. Optimization and analytical performancePresented at the 2000 Winter Conference on Plasma Spectrochemistry, Fort Lauderdale, FL, USA, January 10–15, 2000. Journal of Analytical Atomic Spectrometry 2000, 15, 1261-1269.
21. Reid, H. J.; Bashammakh, A. A.; Goodall, P. S.; Landon, M. R.; O’Connor, C.; Sharp, B. L., Determination of iodine and molybdenum in milk by quadrupole ICP-MS. Talanta 2008, 75, 189-197.
22. Quinones, O.; Snyder, S. A.; Cotruvo, J. A.; Fisher, J. W., Analysis of bromate and bromide in blood. Toxicology 2006, 221, 229-234.
23. Fecher, P. A.; Goldmann, I.; Nagengast, A., Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. Journal of Analytical Atomic Spectrometry 1998, 13, 977-982.
24. 王凱恩, 毛細管電泳及液相層析法結合感應耦合電漿質譜儀於碘與溴之物種分析應用. 國立中山大學, 高雄市. 2006.
25. 陳晶環, 毛細管電泳結合感應耦合電漿質譜儀應用於食品及生物樣品中溴、碘、鈷、硒及碲物種之分析. 國立中山大學, 高雄市. 2007.
26. Othman, A. A.; Al-Ansi, S. A.; Al-Tufail, M. A., Determination of bromate in bottled drinking water from Saudi Arabian markets by HPLC/ICP-MS. Analytical Letters 2010, 43, 886-891.
27. Shi, H.; Adams, C., Rapid IC–ICP/MS method for simultaneous analysis of iodoacetic acids, bromoacetic acids, bromate, and other related halogenated compounds in water. Talanta 2009, 79, 523-527.
28. Han, X.; Cao, L.; Cheng, H.; Liu, J.; Xu, Z., Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Analytical Methods 2012, 4, 3471-3477.
29. Heumann, K. G.; Gallus, S. M.; Rädlinger, G.; Vogl, J., Accurate determination of element species by on-line coupling of chromatographic systems with ICP-MS using isotope dilution technique. Spectrochimica Acta Part B: Atomic Spectroscopy 1998, 53, 273-287.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code