Responsive image
博碩士論文 etd-0611119-103555 詳細資訊
Title page for etd-0611119-103555
論文名稱
Title
液相層析結合動態反應槽感應耦合電漿質譜儀於食米中鉻物種分析之應用
Determination of chromium species in rice using HPLC-DRC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-09
繳交日期
Date of Submission
2019-07-11
關鍵字
Keywords
感應耦合電漿質譜儀、液相層析法、動態反應槽、t-test、鉻、食米
ICP-MS, t-test, DRC, chromium, rice, HPLC
統計
Statistics
本論文已被瀏覽 5766 次,被下載 64
The thesis/dissertation has been browsed 5766 times, has been downloaded 64 times.
中文摘要
第一部份研究利用逆相層析法結合動態反應槽感應耦合電漿質譜儀對食米中鉻物種進行分析。使用C18逆相層析管柱,以0.5 mmol L-1 TBAP、0.1 mmol L-1 EDTA以及2% (v/v)甲醇(pH 6.9)作為動相,以等位沖堤方式在6分鐘內分離Cr(III)和Cr(VI)。為了得到較好的偵測極限,以超音波霧化器作為霧化輸入裝置,除了提升霧化效率,還能利用加熱與冷凝系統去除動相中的水及有機溶劑,利於提升分析物訊號並降低背景訊號。此外,亦藉由動態反應槽搭配NH3作為反應氣體,減少偵測52Cr及53Cr時來自40Ar12C+、40Ar13C+等多原子離子光譜干擾。Cr(III)與Cr(VI)之偵測極限分別為0.011 ng mL-1及0.012 ng mL-1,而滯留時間、波峰高度、波峰面積之再現性RSD皆小於3%。樣品於動相中添加1% (v/v) HF及2 mmol L-1 EDTA作為萃取試劑,以微波輔助方式萃取,並利用標準參考樣品NIST SRM 1573a Tomato Leaves驗證方法準確性。最後將此方法用於食用白米及米精樣品中鉻物種之分析。
第二部份利用陰離子交換層析法結合動態反應槽感應耦合電漿質譜儀對食米中進行Cr(VI)分析。使用PRP-X100作為管柱,以 80 mmol L-1 NH4NO3及1% (v/v)甲醇(pH 8.8)作為動相,可於6分鐘內分離Cr(III)和Cr(VI)。搭配NH3作為反應氣體,降低使用ICP-MS偵測52Cr及53Cr 所產生之光譜干擾。Cr(VI)之偵測極限為0.064 ng mL-1,而滯留時間、波峰高度、波峰面積之再現性RSD皆小於2.9%。樣品於動相中添加5% (v/v)四甲基氫氧化銨(TMAH)作為萃取試劑,使用超音波震盪輔助方式萃取。將此方法應用於標準參考樣品NIST SRM 1573a Tomato Leaves、食用白米、米精及糙米樣品中Cr(VI)之分析。最後將兩部份研究之方法所測得標準參考樣品NIST SRM 1573a Tomato Leaves、食用白米以及米精中Cr(VI)含量結果進行t-test分析,結果顯示於95%信賴區間內不具明顯差異,證實兩部份之分析方法皆具準確性。
Abstract
First part of research focused on reversed-phase chromatography with dynamic reaction cell ICP-MS for determination of chromium species in variety of rice samples. The separation was performed on reverse-phase column C18 using isocratic elution program which contain 0.5 mmol L-1 TBAP, 0.1 mmol L-1 EDTA and 2% (v/v) methanol at pH 6.9. To further species separation of Cr(III) and Cr(VI) was achieved within 6 mins. The ultrasonic nebulizers (USN) were utilized as atomized input device to further achieve better detection limit. USN can improve enormously atomization efficiency. In addition, the desolvation and condensation system of USN can remove most of the unwanted water and organic solvents in mobile phase which implies that decline the background. To further achievement, the potentially interfering 40Ar12C+ and 40Ar13C+ at the chromium mass m/z 52 and m/z 53 were reduced by dynamic reaction cell using NH3 as a reaction gas were applied. The detection limits of Cr(III) and Cr(VI) were obtained 0.011 and 0.012 ng mL-1, respectively. Besides, relative standard deviations of retention time, peak height, peak area was achieved less than 3%. Moreover, sample were extracted using microwave heating with 1% (v/v) HF and 2 mmol L-1 EDTA in mobile phase, along with this proposed method was applied and then validated by standard reference samples by NIST SRM 1573a Tomato Leaves, in real world application this proposed method were further applied to several samples (white rice and also rice cereals).
In second part of research focused on anion-exchange chromatography with dynamic reaction cell ICP-MS for determination of Cr(VI) species in rice samples. The separation of Cr(III) and Cr(VI) was performed by using PRP-X100 column with 80 mmol L-1 NH4NO3 and 1% (v/v) methanol at pH 8.8. The overall separation time this can be carried out within 6 mins accompanied by spectral interference in ICP-MS at chromium m/z 52 and m/z 53 were reduced using NH3 as a reaction gas. The detection limits of Cr(VI) were obtained 0.064 ng mL-1. In addition, relative standard deviations of the retention time, peak height, and peak area are all less than 2.9%. Besides, the samples were extracted with 5% (v/v) TMAH in mobile phase by ultrasonic extraction method. Based on that, proposed this method was applied to standard reference sample NIST SRM 1573a Tomato Leaves, with several rice samples (white rice, rice cereal, and brown rice). In conclusion, the t-test were also utilized to determine the Cr(VI) species of this proposed research which implies that both methods were performed on standard reference sample NIST SRM 1573a Tomato Leaves, and multiple rice samples. The results were shown that there was no significant difference in the proposed two methods with successfully achieved 95% confidence level.
目次 Table of Contents
目 錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 … viii
表目錄 … x


第一章 逆相層析法結合動態反應槽感應耦合電漿質譜儀於食用白米及米精中鉻物種分析之應用
壹、前言 1
貳、實驗部份 5
一、儀器裝置 5
二、試藥及溶液之配製 8
三、樣品及標準參考樣品 9
參、實驗流程 10
一、液相層析分離條件最適化 10
二、超音波霧化器系統最適化 10
三、DRC-ICP-MS系統最適化 10
四、再現性 11
五、校正曲線與偵測極限 12
六、萃取條件最適化 12
七、真實樣品分析 12
肆、結果與討論 17
一、液相層析條件之最適化探討 17
二、超音波霧化器系統最適化探討 20
三、DRC-ICP-MS系統最適化條件 25
四、再現性 36
五、校正曲線與偵測極限的估計 36
六、萃取最適化條件 40
七、方法準確性的評估 41
八、真實樣品分析 49
伍、結論 57
陸、參考文獻 58


第二章 陰離子交換層析法結合動態反應槽感應耦合電漿質譜儀於食用白米、米精及糙米中Cr(VI)分析之應用
壹、前言 63
貳、實驗部份 65
一、儀器裝置 65
二、試藥及溶液之配製 67
三、樣品及標準參考樣品 68
參、實驗流程 68
一、液相層析分離條件最適化 68
二、DRC-ICP-MS系統最適化 69
三、再現性 69
四、校正曲線與偵測極限 69
五、萃取條件最適化 70
六、真實樣品分析 70
肆、結果與討論 74
一、液相層析條件之最適化探討 74
二、DRC-ICP-MS系統最適化條件 77
三、再現性 83
四、校正曲線與偵測極限的估計 90
五、萃取最適化條件 90
六、真實樣品分析 95
伍、 結論 110
陸、 參考文獻 111
參考文獻 References
第一章 逆相層析法結合動態反應槽感應耦合電漿質譜儀於食用白米及米精中鉻物種分析之應用
1. Catalani, S.; Fostinelli, J.; Gilberti, M. E.; Apostoli, P. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC–ICP-MS) for the determination of chromium species in drinking and tap water. Int. J. Mass spectrom. 2015, 387, 31-37.
2. Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G. Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 2013, 770, 140-146.
3. Anderson, R. A.; Kozlovsky, A. S. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am. J. Clin. Nutr. 1985, 41, 1177-1183.
4. Underwood, E. J. Chromium, in: Trace Elements in Human and Animal Nutrition, Academic Press. 1987, 9, 258-270.
5. O'Brien, P.; Wang, G. Coordination chemistry and the carcinogenicity and mutagenicity of chromium(VI). Environ Geochem Health. 1989, 11, 77-85.
6. Wilbur, S.; Ingerman, L.; Citra, M.; Osier, M.; Wohlers, D. Toxicological profile for chromium. US Department of Health and Human Services. Public Health Service, Agency for Toxic Substances and Disease Registry. 2000, 1-419.
7. EPA, US. Integrated Risk Information System (IRIS) on Chromium (VI). National Center for Environmental Assessment. Office of Research and Development, Washington, Washington, 1999.
8. Stout, M. D.; Herbert, R. A.; Kissling, G. E.; Collins, B. J.; Travlos, G. S.; Witt, K. L.; Melnick, R. L.; Abdo, K. M.; Marlarkey, D. E.; Hooth, M. J. Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ. Health Perspect. 2009, 117, 716-722.
9. Chen, Z. L.; Naidu, R.; Subramanian, A. Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent. J. Chromatogr. A 2001, 927, 219-227.
10. Chen, Y.; Chen, J.; Xi, Z.; Yang, G.; Wu, Z.; Li, J.; Fu, F. Simultaneous analysis of Cr(III), Cr(VI), and chromium picolinate in foods using capillary electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 2015, 36, 1208-1215.
11. Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y. Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 2010, 81, 1856-1860.
12. Sadiq, N. W.; Beauchemin, D. Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment of Food Safety. Anal. Chem. 2017, 89, 13299-13304.
13. Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B. Speciation of chromium in chromium yeast. World J. Microbiol. Biotechnol. 2014, 30, 3245-3250.
14. Perez-Escalante, E.; Gonzalez-Olivares, L. G.; Cruz-Guerrero, A. E.; Galan-Vidal, C. A.; Paez-Hernandez, M. E.; Alvarez-Romero, G. A. Size exclusion chromatography (SEC-HPLC) as an alternative to study thrombin inhibition. J. Chromatogr. B 2018, 1074, 34-38.
15. Vacchina, V.; de la Calle, I.; Seby, F. Cr(VI) speciation in foods by HPLC-ICP-MS: investigation of Cr(VI)/food interactions by size exclusion and Cr(VI) determination and stability by ion-exchange on-line separations. Anal. Bioanal. Chem. 2015, 407, 3831-3839.
16. Thomas, D. H.; Rohrer, J. S.; Jackson, P. E.; Pak, T.; Scott, J. N. Determination of hexavalent chromium at the level of the California Public Health Goal by ion chromatography. Journal of Chromatography A 2002, 956, 255-259.
17. Gammelgaard, B.; Liao, Y. P.; Jøns, O. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection. Anal. Chim. Acta 1997, 354, 107-113.
18. Beere, H. G.; Jones, P. Investigation of chromium(III) and chromium(VI) speciation in water by ion chromatography with chemiluminescence detection. Analytica Chimica Acta 1994, 293, 237-243.
19. Šikovec, M.; Novič, M.; Hudnik, V.; Franko, M. On-line thermal lens spectrometric detection of Cr(III) and Cr(VI) after separation by ion chromatography. Journal of Chromatography A 1995, 706, 121-126.
20. Prokisch, J.; Kovács, B.; Gyódri, Z.; Loch, J. Interfacing ion chromatography with inductively coupled plasma atomic emission spectrometry for the determination of chromium(III) and chromium(VI). Journal of Chromatography A 1994, 683, 253-260.
21. Markiewicz, B.; Komorowicz, I.; Sajnog, A.; Belter, M.; Baralkiewicz, D. Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
22. Xing, L.; Beauchemin, D. Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom. 2010, 25, 1046-1055.
23. Popp, M.; Hann, S.; Koellensperger, G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry--a review. Anal. Chim. Acta 2010, 668, 114-129.
24. Soares, M. E.; Bastos, M. L.; Ferreira, M. Selective determination of Cr(VI) in powdered milk infant formulas by electrothermal atomization atomic absorption spectrometry after ion exchange. J. AOAC Int. 2000, 83, 220-223.
25. Lin, Y. A.; Jiang, S. J.; Sahayam, A. C.; Huang, Y. L. Speciation of chromium in edible animal oils after microwave extraction and liquid chromatography inductively coupled plasma mass spectrometry. Microchem. J. 2016, 128, 274-278.
26. Unceta, N.; Astorkia, M.; Abrego, Z.; Gomez-Caballero, M., Goicolea, M. A.; Barrio, R. J. A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by speciated isotope dilution mass spectrometry. Talanta 2016, 254, 255-262.
27. Ni, Z.; Tang, F.; Qu, M.; Mo, R. Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry. Chinese J. Chrom. 2014, 32, 174-178.
28. 阮茹瑩, 液相層析結合感應耦合電漿質譜儀於酒品、飲料及米樣品中鉻物種之分析應用. 國立中山大學, 高雄市. 2018.
29. Batista, B. L.; Rodrigues, J. L.; Nunes, J. A.; Souza, V. C.; Barbosa, F., J. Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal. Chim. Acta 2009, 639, 13-8.
30. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B. Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 1051-1060.
31. Ščančar, J.; Milačič, R. A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J. Anal. At. Spectrom. 2014, 29, 427-443.
32. D'Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal. Chim. Acta 2011, 698, 6-13.
33. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C. Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 636-641.
34. Duo, L. A.; Lian, F.; Zhao, S. L. Enhanced uptake of heavy metals in municipal solid waste compost by turfgrass following the application of EDTA. Environ Monit Assess 2010, 165, 377–387.
35. Zhao, S.; Lian, F.; Duo, L. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresource Technology 2011, 102, 621-626.
36. Chang, Y. L.; Jiang, S. J. Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 858-862.
37. Stanislawska, M.; Janasik, B.; Wasowicz, W. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace. Talanta 2013, 117, 14-19.
38. Hu, L.; Cai, Y.; Jiang, G. Occurrence and speciation of polymeric chromium(III), monomeric chromium(III) and chromium(VI) in environmental samples. Chemosphere. 2016, 156, 14-20.
39. Levina, A.; Lay, P. A. Chemical Properties and Toxicity of Chromium(III) Nutritional Supplements. Chem. Res. Toxicol. 2008, 21, 563–571.
40. Pechancová, R.; Pluháček, T.; Gallo, J.; Milde, D. Study of chromium species release from metal implants in blood and joint effusion: Utilization of HPLC-ICP-MS. Talanta. 2018, 185, 370–377.

第二章 陰離子交換層析法結合動態反應槽感應耦合電漿質譜儀於食用白米、米精及糙米中Cr(VI)分析之應用
1. Emsley, J. Nature's Building Blocks: an AZ Guide to the Elements. Oxford Uni. Press, 2011.
2. Rieuwerts, J. The Elements of Environmental Pollution. Routledge, 2017.
3. Kotas, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263-283.
4. Mahmoud, M. E.; Yakout, A. A.; Ahmed, S. B.; Osman, M. M. Hazard, J. Speciation, selective extraction and preconcentration of chromium ions via alumina-functionalized-isatin-thiosemicarbazone. J. Hazard. Mater. 2008, 158, 541-548.
5. Krull, I. S. Trace metal analysis and speciation. Elsevier, 1991.
6. Tunçeli, A.; Türker, A. R. Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS. Talanta 2002, 57, 1199-1204.
7. Aggarwal, S. K.; Kinter, M.; Fitzgerald, R. L.; Herold, D. A.; Harrison, W. Mass Spectrometry of Trace Elements in Biological Samples. Crit. Rev. Clin. Lab. Sci. 1994, 31, 35-87.
8. Nriagu, J. O.; Nieboer, E. Chromium in the natural and human environments. John Wiley & Sons, 1988.
9. IARC. Chromium, nickel and welding. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Scientific Publications, 1990.
10. Katz, S. A.; Salem, H. The toxicology of chromium with respect to its chemical speciation: a review. J. Appl. Toxicol. 1993, 13, 217-224.
11. 全省稻米中重金屬(鋅、鉻、鎳)含量之調查.pdf
12. Vacchina, V.; Séby, F. Cr(VI) speciation in foods by HPLC-ICP-MS: investigation of Cr(VI)/ food interactions by size exclusion and Cr(VI) determination and stability by ion-exchange on-line separations. Anal. Bioanal. Chem. 2015, 407, 3831-3839.
13. Mathebula, M. W.; Mandiwana, K.; Panichev, N. Speciation of chromium in bread and breakfast cereals. Food Chem. 2017, 217, 655-659.
14. Novotnik, B.; Zuliani, T.; Scancar, J.; Milacic, R. Chromate in food samples: an artefact of wrongly applied analytical methodology. J. Anal. Atomic Spectrom. 2013, 28, 558-566.
15. Martone, N.; Rahman, G. M.; Pamuku, M.; Kingston, H. S. Determination of chromium species in dietary supplements using speciated isotope dilution mass spectrometry with mass balance. J. Agric. Food Chem. 2013, 61, 9966-9976.
16. 翁御銘, 液相層析結合感應耦合電漿質譜儀於食品中六價鉻與含硫化合物之分析應用. 國立中山大學, 高雄市. 2017.
17. Sadiq, N. W.; Beauchemin, D. Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment of Food Safety. Anal. Chem. 2017, 89, 13299-13304.
18. Wrobel, K.; Kannamkumarath, S.; Wrobel, K. Environmentally friendly sample treatment for speciation analysis by hyphenated techniques. Green Chemistry 2003, 5, 250–259.
19. Li, P.; Li, L.; Xia, J.; Cao, S.; Hu, X.; Lian, H. Z.; Ji, S. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2015, 38, 4043–4047.
20. Markiewicz, B.; Komorowicz, I.; Sajnog, A.; Belter, M.; Baralkiewicz, D. Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
21. Seby, F.; Vacchina, V. Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices. Trends in Analytical Chemistry. 2018, 104, 54-68.
22. Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B., Speciation of chromium in chromium yeast. World J. Microbiol. Biotechnol. 2014, 30, 3245-3250.
23. Sun, J.; Ma, L.; Yang, Z.; Wang, L., Optimization of species stability and interconversion during the complexing reaction for chromium speciation by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2014, 37, 1944-1950.
24. Novotnik, B.; Zuliani, T.; Scancar, J.; Milacic, R. Content of trace elements and chromium speciation in Neem powder and tea infusions. J. Trace Elem. Med. Biol. 2015, 31, 98-106.
25. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B. Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 1051-1060.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code