論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
利用隨機森林方法建立破產公司之預警模型 Predictive modeling of bankruptcy companies using the random forests approach |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
47 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-06-25 |
繳交日期 Date of Submission |
2021-07-12 |
關鍵字 Keywords |
財務危機、財務比率、破產預測、隨機森林、羅吉斯迴歸 Financial crisis, Financial ratio, Bankruptcy prediction, Random forests, Logistic regression |
||
統計 Statistics |
本論文已被瀏覽 528 次,被下載 12 次 The thesis/dissertation has been browsed 528 times, has been downloaded 12 times. |
中文摘要 |
破產公司預警模型主要用於觀察各公司的內部經營狀況對於公司破產的關聯性,財務比率、公司治理和企業社會責任是最常見的研究變數,在本研究將使用財務比率對2009至2020年因財務問題下市之公司進行預測,選用的方法為機器學習方法之一的隨機森林進行預測,觀察其表現是否優異並找出最適合在公司破產前三年進行預測的變數有哪些。根據實證結果發現最適合的變數包括營運槓桿度、利息保障倍數、財務槓桿度、稅後淨利率、每股盈餘、現金流量比率和稅前息前淨利與總資產比,對於破產前一年的總預測準確度為83.78%,對於實際破產公司的預測準確度則高達95%,破產前兩年及前三年的準確度也有83.78%和78.38%。此外,本研究進一步探討台灣進行破產預測研究使用最多的羅吉斯迴歸與隨機森林做比較,結果發現在運用相同資料時,隨機森林的預測準確率較為出色,更適合運用在台灣的破產預測議題上,而在變數選擇方面財務比率的研究結果相較公司治理的研究結果更為準確。 |
Abstract |
The predictive model of bankrupt companies is mainly used to observe the internal operating conditions of each company and the correlation between the company's bankruptcy. Financial ratio, corporate governance and corporate social responsibility are the most common research variables. In this study, we will use financial ratio to predict the companies going to the market due to financial problems from 2009 to 2020. The selected method is random forest, one of the machine learning methods, observe whether the company's performance is excellent and find out what variables are most suitable for forecasting the company in the three years before bankruptcy. According to the empirical results, the most suitable variables include degree of operating leverage, times interest earned, degree of financial leverage, net profit margin, earnings per share, cash flow ratio and the ratio of net profit before interest and total assets. The total prediction accuracy of the year before bankruptcy is 83.78%, while the prediction accuracy of the actual bankrupt company is as high as 95%, The accuracy of the two and three years before bankruptcy was 83.78% and 78.38%. In addition, this study further explores the comparison between the most frequently used logistic regression and random forests in Taiwan's bankruptcy prediction research. The results show that the prediction accuracy of random forests is better when using the same data, and it is more suitable for Taiwan's bankruptcy prediction, in terms of variable selection, the results of financial ratio are more accurate than those of corporate governance. |
目次 Table of Contents |
論文審定書 i 謝辭 ii 摘要 iii Abstract iv 圖次 vi 表次 vii 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的與動機 3 第三節 研究架構 4 第二章 文獻探討 5 第一節 破產公司之定義 5 第二節 預測破產之模式探討 6 第三節 建立預警模型之方法 8 第三章 研究方法 11 第四章 破產預測之實證結果與分析 22 第一節 多變數篩選 22 第二節 預測準確度 26 第五章 相關方法之結果與比較 30 第一節 羅吉斯迴歸 30 第二節 訓練集和測試集比例調整之預測結果 31 第三節 公司治理因素 32 第六章 結論與建議 34 第一節 結論 34 第二節 建議 35 附錄 36 參考文獻 37 |
參考文獻 References |
中文文獻 1. 王暉元,2018,混合式機器學習技術於破產預測之研究」,中央大學資訊管理研究所碩士論文。 2. 林豐騰,2009,企業財務危機預測-整合財務指標、公司治理因素及智慧資本構面模型,績效與策略研究,6(2),59-72。 3. 徐中琦、劉皇佑,2011,台灣集團企業財務預警模型之探討―DEA-DA模型的應用,台灣管理學刊,11(1),2011。 4. 陳鴻隆、林櫻蓮、林承諭、Dashdorj Myagmarsuren、顏柏豪,2013,公司破產預警模式之建立-以台灣上市公司為例,International Journal of Science and Engineering,3(4),45-59。 5. 蔡佩珍,2021,運用機器學習法預測經濟成長率之初探,經濟研究,21,309-326。 英文文獻 6. Altman, E.I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23: 589-609. 7. Alaka, H.A., Oyedele, L.O., Owolabi, H.A., Kumar, V., Ajayi, S.O., Akinade, O.O., Bila, B. 2018. Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems With Applications, 94: 164-184. 8. Barboza, F., Kimura, H., Altman, E. 2017. Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83: 405-417. 9. Breiman, L. 2001. Random Forests. Machine Learning, 45: 5-32. 10. Breiman, L; Friedman, J. H., Olshen, R. A., & Stone, C. J. 1984. Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. 11. Beaver, W.H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research, 4: 71-111. 12. Cinca, C. S., Nieto, B.G. 2013. Partial Least Square Discriminant Analysis for bankruptcy prediction. Decision Support Systems,52: 1245-1255. 13. Daily, C.M., Dalton, D.R.1994. Bankruptcy and Corporate Governance: The Impact of Board Composition and Structure. Academy of Management Journal, 37(6):1603-1617. 14. Erdogan, B.E. 2013. Prediction of bankruptcy using support vector machines: an application to bank bankruptcy. Journal of Statistical Computation and Simulation, 82: 1543-1555. 15. Foster, B.P., Ward, T.J., Woodroof, J. 1998. An Analysis of the Usefulness of Debt Defaults and Going Concern Opinions in Bankruptcy Risk Assessment. Journal of Accounting Auditing & Finance, 13: 351-371. 16. Jabeur, S.B. 2017. Bankruptcy prediction using Partial Least Squares Logistic Regression. Journal of Retailing and Consumer Services,36: 197-202. 17. Kühnlein, M., Appelhans, T., Thies, B., Nauss, T. 2014. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI. Remote Sensing of Environment Volume 141, 129-143. 18. Li, Z., Crook, J., Andreeva, G., Tang, Y. 2020. Predicting the risk of financial distress using corporate governance measures. Pacific-Basin Finance Journal, https://doi.org/10.1016/j.pacfin.2020.101334 19. Liang, D., Lu, C.C., Tsai, C.F., Shih, G.A. 2016. Financial Ratios and Corporate Governance Indicators in Bankruptcy Prediction: A Comprehensive Study. European Journal of Operational Research, doi: 10.1016/j.ejor.2016.01.012. 20. Ljungqvist, A., Nanda, V., Singh, R. 2006. Hot Markets, Investor Sentiment, and IPO Pricing. The Journal of Business, Vol. 79, No. 4 (July 2006), pp. 1667-1702. 21. Lee, T.S., Yeh, Y.H. 2004. Corporate Governance and Financial Distress: evidence from Taiwan. Corporate Governance,12: 378-388. 22. Öcal, N., Ercan, M.K., Kadıoğlu, E. 2015. Predicting Financial Failure Using Decision Tree Algorithms: An Empirical Test on the Manufacturing Industry at Borsa Istanbul. International Journal of Economics and Finance,7: 189-206. 23. Ohlson, J.A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18: 109-131. 24. Smiti, S., Soui, M. 2020. Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE. Information Systems Frontiers. 25. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A. 2008. Conditional variable importance for random forests. BMC Bioinformatics 2008, 9:307. 26. Sanchis, A., Segovia, M.J., Gil, J.A., Heras, A., Vilar, J.L. 2007. Rough Sets and the role of the monetary policy in financial stability (macroeconomic problem) and the prediction of insolvency in insurance sector (microeconomic problem). European Journal of Operational Research, 181: 1554-1573 27. Sornette, D. 2003. Critical market crashes. Physics Reports 378 (2003) 1-98. 28. Vicario, R.B., Alaminos, D., Aranda, E., Gámez, M. A. F. 2020. Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry. Sustainability, 12: 5180. 29. Zmijewski, M.E. 1984. Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22: 59-82. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |