Responsive image
博碩士論文 etd-0614113-214558 詳細資訊
Title page for etd-0614113-214558
論文名稱
Title
振幅與相位可調之高效率E類功率振盪器
Highly Efficient Class-E Power Oscillator with Tunable amplitude and Phase
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-04
繳交日期
Date of Submission
2013-07-14
關鍵字
Keywords
注入鎖定振盪器、E類功率振盪器、高效率振盪器、相位可調、振幅可調、變壓器回授
injection locking oscillator, highly efficient oscillator, class-E power oscillator, tunable phase, tunable amplitude, transformer feedback
統計
Statistics
本論文已被瀏覽 5802 次,被下載 581
The thesis/dissertation has been browsed 5802 times, has been downloaded 581 times.
中文摘要
基於未來的無線通訊系統將朝向低功率消耗與高能源效率去發展,對於無線發射機的晶片設計將是嚴峻的挑戰,本論文的晶片設計著重在短距離固定波包調制系統之發射功率放大的應用上。為了克服在低消耗功率條件下仍維持著高增益與高效率之功率放大功能,因此本論文基於一般注入鎖定發射機架構,設計此架構所需之高效率振盪器CMOS晶片。本論文主要分為兩部分,首先就注入鎖定振盪器進行理論分析,並設計一變壓器回授之注入鎖定振盪器,作為驅動放大器之用。接下來第二部分論述E類功率放大器理論,並以此理論為基礎設計一變壓器回授之注入鎖定E類功率振盪器,使其具備兩個特徵:一是利用E類操作特性,輸出電壓正比於操作電壓達到振盪器輸出振幅可調;另一則是利用注入鎖定原理,藉由電壓調整端電壓改變達到振盪器輸出相位可調。
Abstract
Since the development of wireless communication system goes toward low power and high energy efficiency, design of wireless transmitter integrated circuits (ICs) becomes more challenging. This research focuses on IC designs for efficient power amplification applications in short-range constant-envelope modulation systems. To achieve high gain and high efficiency with low power consumption, this research aims at an injection-locked transmitter with highly efficient CMOS oscillators. The thesis consists of two main parts. Firstly, a transformer-feedback CMOS oscillator is designed as a drive amplifier based on injection locking. Secondly, a transformer-feedback CMOS power oscillator is designed using class-E theory to possess two main functions. One is to tune the oscillation amplitude by changing the supply voltage. The other is to tune the oscillation phase by varying the tuning voltage.
目次 Table of Contents
論文審定書 .................................................................................................................. i
誌謝 .............................................................................................................................. ii
摘要 ............................................................................................................................ iii
Abstract ...................................................................................................................... iv
目錄 .............................................................................................................................. v
圖目錄 ....................................................................................................................... vii
表目錄 ..................................................................................................................... viii
第一章序論.................................................................................................................. 1
1.1 研究背景與動機............................................................................................ 1
1.2 章節規劃........................................................................................................ 6
第二章注入鎖定振盪器 ............................................................................................. 8
2.1 注入鎖定理論................................................................................................ 8
2.1.1 歷史沿革............................................................................................ 8
2.1.2 廣義注入鎖定方程式........................................................................ 9
2.1.3 相位鎖定程序.................................................................................. 12
2.2 晶片電路設計.............................................................................................. 14
2.2.1 振盪器振盪條件.............................................................................. 14
2.2.2 電路架構與設計.............................................................................. 16
2.3 晶片電路模擬與量測結果.......................................................................... 24
第三章注入鎖定 E 類功率振盪器 ........................................................................... 28
3.1 E 類功率振盪器原理 .................................................................................. 29
3.1.1 E 類功率放大器理論 ...................................................................... 29
3.1.2 振盪條件.......................................................................................... 32
3.1.3 注入鎖定於功率振盪器之現象...................................................... 34
3.2 晶片電路設計.............................................................................................. 35
3.2.1 電路架構.......................................................................................... 35
3.2.2 電路設計流程.................................................................................. 36
3.3 晶片電路模擬與量測結果.......................................................................... 41
第四章結論................................................................................................................ 49
參考文獻 ..................................................................................................................... 50
參考文獻 References
[1] R. Kraemer and M. D. Katz, Short-Range Wireless Communications:Emerging Technologies and Application. New York: John Wiley, Apr. 2009.
[2] Bluetooth, S. I. G. (2010). Bluetooth Core Specification v4.0. 30 June 2010 Available online at https://www.bluetooth.org/Technical/Specifications/ adopted.htm
[3] IEEE 802.15.1, Available online at http://www.ieee802.org/15/pub/TG1.html.
[4] IEEE 802.15.3a, WPAN High Rate Alternative PHY Task Group 3a(TG3a), Available online at http://www.ieee802.org/15/pub/TG3a.html
[5] Smart Dust, Available online at http://robotics.eecs.berkeley.Edu/~pister /SmartDust/
[6] Zigbee Alliance, Available online at http://www.zigbee.org/
[7] Faisal Abdel-Latif Elseddeek Ali Hussein, “Ultra low power IEEE 802.15.4/zigbee compliant transceiver,” PhD Dissertation, 2009.
[8] G. P. Fettweis and E. Zimmermann, “ICT energy consumption – trends and challenges,” in Proc. 11th Int. Wireless Personal Multimedia Communications Symp., Sep. 2008, pp. 1-4.
[9] Y. H. Chee, A. M. Niknejad, and J. M. Rabaey, “An ultra-low-power injection locked transmitter for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 41, no 8, Aug. 2006.
[10] B. Van der pol, “Forced oscillations in a circuit with nonlinear resistance,” Phil. Msg., vol. 3, pp. 65–80, Jan. 1927.
[11] R. Adler, “A study of locking phenomena in oscillators,” IRE, vol. 34, no. 6, pp. 351-357, Jun. 1946.
[12] R. D. Huntoon and A. Weiss, “Synchronization of oscillators,” IRE, vol. 35, no. 12, pp. 1415–1423, Dec. 1947.
[13]R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microw. Theory Tech., vol. MTT-10, no. 4, pp. 228–235, Jul. 1962.
[14] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965.
[15] E. F. Calandra and A. M. Sommariva, “Stability analysis of injection-locked oscillators in their fundamental mode of operation,” IEEE Trans. Microw. Theory Tech., vol. MTT-29, no. 11, pp. 1137–1143, Nov. 1981.
[16] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[17] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation,” in Proc. IEEE Custom Integr. Circuits Conf., San Jose, CA, 2006, pp. 737–740.
[18] C.-J. Li, F.-K.Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–3152, Dec. 2009.
[19] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973.
[20] H. L. Stover and R. C. Shaw, “Injection-locked oscillators as amplifiers for angle-modulated signals,” in 1966 IEEE G-MTT Int. Symp. Dig., pp. 60–66.
[21] C. H. Lin and H. Y. Chang, “A broadband injection-locking Class-E power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, Oct. 2010
[22] J. S. Paek and S. Hong, “A 29 dBm 70.7% PAE injection-locked CMOS power amplifier for PWM digitized polar transmitter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp. 637–639, Nov. 2010.
[23] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, Jun. 1999.
[24] M. W. Li, P. C. Wang, T. H. Huang and H. R. Chuang, “Low voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frquency dividers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, Mar. 2012.
[25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection-locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845–851, Jul. 2002.
[26] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, Sep. 2004.
[27] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sep. 2007.
[28] S. Y. Lee, L. H. Wang and Y. H. Lin, “A CMOS quadrature VCO with subharmonic and injection-locked techniques,” IEEE Trans. Circuits Syst.Ⅱ, Exp. Briefs, vol. 55, no. 11, pp. 843-847, Nov. 2010.
[29] Y. Tajima, “GaAs FET applications for injection-locked oscillators and self-oscillating mixers,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 7, pp. 629–632, Jul. 1979.
[30] J. M. Lopez-Villegas, J. G. Macias, J. A. Osorio, J. Cabanillas, J. J. Sieiro, J. Samitier, and N. Vidal, “Continuous phase shift of sinusoidal signals using injection locked oscillators,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 312–314, May 2005.
[31] Y. S. Jeon, H. S. Yang, and S. Nam, “A novel high-efficiency linear transmitter using injection-locked pulsed oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 214–216, Apr. 2005.
[32] S. Diao, Y. Zheng, Y. Gao, S.-J. Cheng, X. Yuan, M. Je, and C.-H. Heng, “A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 120–130, Jan. 2012.
[33] J. M. Lopez-Villegas and J. J. S. Cordoba, “BPSK to ASK signal conversion using injection-locked oscillators – part I: theory,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3757–3766, Dec. 2005.
[34] J. M. Lopez-Villegas, J. G. Macias-Montero, J. A. Osorio, J. Cabanillas, N. Vidal, and J. Samitier, “BPSK to ASK signal conversion using injection-locked oscillators – part II: experiment,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 226–234, Jan. 2006.
[35] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990, ch. 6.
[36] 張盛富、張嘉展,無線通訊射頻晶片模組設計—射頻晶片篇,台北,全華圖書股份有限公司,2008年,第十章,pp.200-258.
[37] D. M. Pozar, Microwave engineering. 3rd ed, John Wiley&Sons, 2005, ch.12
[38] Y. Z. Xiong, “On-chip transformer-based feedback CMOS power oscillator,” Electronics Letters, vol. 41, no. 3, pp.135-137, Feb. 2005.
[39] F. W. Grover, Inductance Calculations Working Formulas And Tables, New York: Dover Publications, 1962.
[40] Y. Eo, W. R. Eisenstadt, “High-speed VLSI interconnect modeling based on S-parameter measurements,” IEEE Trans. Components, Packaging, and Manufacturing Technology, vol. 16, pp. 555 – 562, no. 5, Aug. 1993.
[41] D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Commun., vol. 22, no. 12, pp. 1942–1945, Dec. 1974.
[42] F. J. Casadevall and A. Valdorinos, “Performance analysis of QAM modulations applied to the LINC transmitter,” IEEE Trans. Veh. Technol., vol. 42, pp. 399-406, Nov. 1993.
[43] L. R. Kahn, “Single-sideband transmission by envelope elimination and restoration,” IRE, vol. 40, no. 7, pp. 803–806, Jul. 1952.
[44] A. Diet, M. Villegas, and G. Baudoin, “EER architecture specifications for OFDM transmitter using a Class E amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 8, pp. 389–391, Aug. 2004.
[45] P. Reynaert and M. S. J. Steyaert, “A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598–2608, Dec. 2005.
[46] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, Dec. 2004.
[47] H. S.Oh, T. Song and C. Ki. Kim, “A power-efficienct injeciton-locked Class-E power amplifier for wireless sensor network,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, Apr. 2006.
[48] M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina and D.V.Chernov, “injection-locked Class-E oscillator,” IEEE Trans. Circuits Syst., vol. 53, no. 6, Jun. 2006.
[49] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 168-176, Jun. 1975.
[50] F. H. Raab, “Idealized operation of the Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 24, no. 12, pp. 725–735, Dec. 1977.
[51] M. Kazimierczuk and K. Puczko, “Exact analysis of Class E tuned power amplifier at any Q and switch duty cycle,” IEEE Trans. Circuits Syst., vol. 34, no. 2, pp. 149-159, Feb. 1987.
[52] R. E. Zulinski and J. K. Steadman, “Class E power amplifiers and frequency multipliers with finite DC-feed inductance,” IEEE Trans. Circuits Syst., vol. 34, no. 9, pp. 1074-1087, Sep. 1987.
[53] C. H. Li and Y. O. Yam, “Maximum frequency and optimum performance of Class E power amplifiers,” IEEE Proc. Circuits, Devices, Syst., vol. 141, no. 3, pp. 174-184, Jun. 1994.
[54] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, “Analysis and design of a generalized Class E tuned power amplifier,” IEEE Trans. Circuits Syst., vol. 36, no. 8, pp. 1086-1079, Aug. 1989.
[55] P. Alinikula, K. Choi, and S. I. Long, “Design of Class E power amplifier with nonlinear parasitic output capacitance,” IEEE Trans. Circuits Syst. II, vol. 46, no. 2, pp. 114–119, Feb. 1999.
[56] Y. H.Chee, J. Rabaey, and A. M. Niknejad, “A class A/B low power amplifier for wireless sensor networks,” in Proc, Int. Symp. Circuits Syst., May 2004, pp. 409-412.
[57] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett.,vol. 16, no. 5, pp. 299–301, May 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code