論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
單一或複合脂肪酸對海鱺前脂肪細胞分化及脂質累積之影響 Effects of single or complex fatty acids on cell differentiation and lipid accumulation of preadipocytes in cobia (Rachycentron canadum, Linnaeus, 1766) |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
208 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2013-06-27 |
繳交日期 Date of Submission |
2013-07-15 |
關鍵字 Keywords |
脂質累積、分化、前脂肪細胞、海鱺、脂肪酸 lipid accumulation, differentiation, preadipocytes, cobia, fatty acids |
||
統計 Statistics |
本論文已被瀏覽 5763 次,被下載 378 次 The thesis/dissertation has been browsed 5763 times, has been downloaded 378 times. |
中文摘要 |
本研究建立海鱺前脂肪細胞培養系統,並將此系統應用於探討主要飼料脂質或脂肪酸對海鱺脂肪細胞增殖和分化程度、脂肪蓄積量及脂肪分化相關基因表現的影響,期能應用本系統結果,透過飼料脂肪或脂肪酸配方,調控海鱺魚體脂肪含量及分布。海鱺為少數可以餵飼高脂 (>17%) 飼料之溫水性海水魚種,且市場歡迎其肌肉具高油脂含量,能夠瞭解飼糧因子對脂肪細胞增殖及脂肪細胞油脂蓄積的調控,對海鱺養殖產出符合市場需求高質產品將有很大益處。研究分成四實驗, 包括 (實驗一)前脂肪細胞培養系統建立、(實驗二) 飼料脂肪酸在飼育實驗 (in vivo)與細胞實驗 (in vitro) 基因表現和脂質累積的相對應結果、(實驗三)單一脂肪酸與(實驗四)複合脂肪酸對前脂肪細胞分化基因 CCAAT/enhancer binding protein- β (C/EBPβ)、peroxisome proliferator-activated receptors (PPARs)、fatty acid binding protein1 (FABP1)、fatty acid transport protein 2 (FATP2)、和fatty acid synthase (FAS) 及細胞脂質累積的影響。 實驗一結果顯示海鱺前脂肪細胞最適培養條件為10% 胎牛血清的L-15培養液在28 °C恆溫培養,18天可增生至90% 滿盤 (confluence)。經insulin-transferrin-selenium誘導初期分化後,於培養液添加10%脂質混合物 (lipid mixture)維持細胞分化,分化20天為成熟脂肪細胞,進行Oil Red O染色測定脂質累積量與即時定量PCR (real-time PCR)分析發現,成脂基因(adipogenic genes) FABP1、FATP2和FAS表現量會隨著分化時間而增加,於成熟脂肪細胞達到最高值。 實驗二比較飼育實驗與細胞實驗在評估脂肪生成之研究之一致姓,使用相同脂肪酸組成處理時,含n-6脂肪酸為主的紅花油、橄欖油和棕櫚油飼料脂肪酸組,不論是飼育實驗和細胞實驗均比含n-3脂肪酸為主的魚油和紫蘇油組更能增加脂質累積的效果,且in vitro與in vivo實驗PPARs和FABP基因表現量均呈現正相關,顯示海鱺前脂肪細胞實驗結果與海鱺飼育實驗脂肪分析結果相似度高。 實驗三探討單一脂肪酸棕櫚酸 (palmitic acid,PA 16:0)、硬脂酸(stearic acid,SA 18:1 n-9)、油酸 (oleic acid,OA 18:1 -9)、亞麻油酸(linoleic acid,LA 18:2 n-6)、次亞麻油酸(α-linolenic acid,LNA 18:3 n-3)、Eicosapentaenoic acid (EPA 20:5 n-3)或Docosahexaenoic acid (DHA 22:6 n-3)七種脂肪酸對海鱺前脂肪細胞分化轉錄因子、成脂基因與脂質累積各有不同的影響。轉錄因子C/EBPβ和PPARs在分化初期即表現,且C/EBPβ和PPARγ基因表現時間比PPARα和PPARβ略早,成脂基因FABP1、FATP2和FAS則在分化中末期才開始表現。EPA、DHA、OA和LA使C/EBPβ和PPARs顯著表現,OA和EPA顯著增加FABP1、FATP2和FAS基因表現量。OA顯著增加脂肪細胞尺寸與脂肪細胞累積脂質量,而DHA抑制脂肪細胞肥大,且LNA和DHA明顯不利於油脂累積。 棕櫚油、芥花籽油、大豆油、亞麻仁油、鯷魚油和鱈魚肝油是魚類飼料主要使用的油脂,實驗四將這些油脂的主要脂肪酸以複合方式加入培養液,瞭解多個脂肪酸的協同或拮抗效應。複合油脂中含有OA、LA、EPA和DHA時,均會增加轉錄因子 (C/EBPβ和PPARγ) 基因表現,此四個脂肪酸彼此有協同作用但只有OA與濃度有關;一旦含有PA、SA或LNA,會產生拮抗作用而降低轉錄因子基因表現,其中LNA僅只要存在少量即會產生抑制效果。PA、OA和LA存在顯著提升FAS基因表現和三酸甘油酯 (TG)累積,且三個脂肪酸之間有協同作用;LNA、EPA和DHA均會降低FAS表現和TG含量。LNA、EPA和DHA存在會使脂肪細胞產生較高的活性氧物種,增加細胞氧化壓力。 本研究結果綜合顯示,富含LA與OA的油脂有助於增加海鱺脂肪細胞油脂蓄積,而含LNA的油脂不利於脂質累積,應用海鱺前脂肪細胞培養系統來推測營養素對海鱺脂肪生成的影響似無窒礙之處。 |
Abstract |
The present study established cobia preadipocytes culture system, and used the system to investigate the effects of dietary lipids or fatty acids on cobia preadipocytes proliferation, differentiation, lipid accumulation and adipogenesis genes expression. The aim was to explore the possibility modulate cobia lipid distribution and content through nutritional manipulation. Cobia is a warmwater finfish that accepts high lipid (>17%) diets and is well valued for its white muscle of high lipid levels. In the present study, in addition to optimizing the culture medium for the differentiation of preadipocytes model in Experiment I, several studies evaluating the effects of fatty acids were carried out, including: (Experiment II) comparisons of lipid accumulation and differentiation genes expression in adipocytes between in vivo and in vitro experimental settings, (Experiment III) the effects of single fatty acid as well as (Experiment IV) multiple fatty acids on cobia preadipocytes differentiation genes CCAAT/enhancer binding protein- β (C/EBPβ), peroxisome proliferator-activated receptors (PPARs), fatty acid binding protein1 (FABP1), fatty acid transport protein 2 (FATP2) and fatty acid synthase (FAS) expression. In the Experiment I, cobia preadipocytes cultured in L-15 medium with 10% FBS at 28 °C was found to have a high proliferation potential leading to a monolayer confluence by day 18. Oil Red O staining indicated numerous large cytoplasmic lipid droplets were formed and real-time PCR analyses showed increasing upregulations of FABP1, FATP2 and FAS as preadipocytes differentiated. In the Experiment II, the expression levels of PPARs and FABP were compared between an in vivo and an in vitro experiments. The results of the in vitro and in vivo experiments were found to be compatible. Lipid accumulation was found to be greater in response to safflower oil, olive oil and palm oil treatments in both experiments than in fish oil and perilla oil treatments. At both molecular and cell levels, the effects of fatty acids on adipogenesis in vitro and in vivo systems showed similar trends. In the Experiment III, palmitic acid (PA 16:0), stearic acid (SA 18:1 n-9), oleic acid (OA 18:1 -9), linoleic acid (LA 18:2 n-6), α-linolenic acid (LNA 18:3 n-3), eicosapentaenoic acid (EPA 20:5 n-3) or docosahexaenoic acid (DHA 22:6 n-3) were found to modulate differentially on cobia preadipocyte differentiation. C/EBPβ and PPARs expression increased during the early phase of differentiation and decreased at later stages of differentiation. On the other hand expressions of FABP1, FATP2 and FAS were increased throughout the differentiation process. The expression levels of C/EBPβ and PPARγ increased when the cells were exposed to OA, LA, EPA and DHA groups. OA and EPA increased the expression levels of FABP1, FATP2 and FAS. LNA and DHA led to a lower accumulation of triglycerides (TG) in mature adipocytes than OA. In the Experiment IV, the synergistic or antagonistic effects of major fatty acids of palm oil, rapeseed oil, soybean oil, flaxseed oil, anchovy oil or cod liver oil on adipogenesis and adipocyte differentiation were investigated. The expression levels of C/EBPβ and PPARγ were increased when the adipocytes were exposed to OA, LA, EPA or DHA, indicating a synergistic effect. Transcription factor genes expression levels were reduced with the exposure to PA, SA and low levels of LNA. The expression level of FAS and TG accumulation were significantly higher for PA, OA and LA than for LNA, EPA and DHA. The amount of reactive oxygen species production increased in adipocytes with exposure to LNA, EPA and DHA. |
目次 Table of Contents |
論文審定書∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ i 誌謝 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ii 中文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ iii 英文摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ vi 目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ix 圖次 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ xi 表次 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ xiv 英文縮寫對照表∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ xv 第一章 文獻回顧∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 1.1 水產飼料中的油脂∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1 1.2 魚油取代對體組成及飼料效率的影響∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3 1.3 脂肪形成過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9 1.4 脂肪細胞分化標誌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11 1.5 多元不飽和脂肪酸∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32 1.6 細胞實驗使用脂肪酸的研究∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 41 第二章 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 44 第三章 綜合材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51 3.1 海鱺前脂肪細胞分離方式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51 3.2 細胞培養成長與分化條件∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51 3.3 前脂肪細胞增生抗原測定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52 3.4 前脂肪細胞分化為脂肪細胞程度之測定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52 3.5 脂肪細胞Total RNA 萃取∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 53 3.6 RNA 變性電泳分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54 3.7 互補去氧核醣核酸(cDNA)之製備∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54 3.8 PCR 及DNA 電泳分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 54 3.9 即時定量PCR∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 55 3.10 統計分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 55 第四章 建立海鱺前脂肪細胞培養系統 (實驗一) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 58 4.1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 58 4.2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 59 4.3 結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 61 4.4 討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 68 第五章 脂肪酸影響海鱺前脂肪細胞脂肪分化基因表現與脂質累 積:細胞培養與飼養試驗之比較(實驗二) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 71 5.1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 71 x 5.2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 72 5.3 結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 76 5.4 討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 80 第六章 單一脂肪酸對海鱺前脂肪細胞分化及基因表現之影響 (實驗三) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 88 6.1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 88 6.2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 89 6.3 結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 90 6.4 討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 98 第七章 複合脂肪酸對海鱺前脂肪細胞分化及油脂累積之影響 (實驗四) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 107 7.1 前言∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 107 7.2 材料與方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 110 7.3 結果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 114 7.4 討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 123 第八章 總結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 133 第九章 參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 135 附錄 |
參考文獻 References |
林佩貞,2008。飼料添加植物油脂對海鱺稚魚成長、脂肪狀態、代謝酵素活性、及脂肪酸組成的影響。國立中山大學海洋生物研究所碩士論文。 陳威志,2006。以亞麻仁油和玉米油取代魚油對海鱺幼魚成長、脂肪酸代謝及免疫反應的影響。國立中山大學海洋生物研究所碩士論文。 曾梅雀,2008。海鱺脂肪代謝相關基因 LPL 和 FABPs 之選殖及飼料油脂組成對其表現之影響。國立中山大學海洋生物研究所碩士論文。 蔡美玲,2009。養殖海鱺過氧化體增生活化受體 (PPAR) 基因表現與體脂肪之研究。國立中山大學海洋生物研究所博士論文。 Aagaard MM, Siersbaek R, Mandrup S. (2011) Molecular basis for gnen-specific transactivation by nuclear receptors. Biochimica et Biophysica Acta 1812: 824–835. Aarsland A, Chinkes D, Wolfe RR. (1997) Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. The American Journal of Clinical Nutrition 65: 1774–1782. Agradi E, Abrami G, Serrini G, McKenzie D, Bolis C, Bronzi P (1993) The role of dietary N-3 fatty acid and vitamin E supplements in growth of sturgeon (Acipenser naccarii). Comparative Biochemistry and Physiology A 105: 187–195. Ailhaud G. (1999) Cell surface receptors, nuclear receptors and ligands that regulate adipose tissue development. Clinica Chimica Acta 286: 181–190. Ailhaud G. (2006) n-6 fatty acids and adipogenesis. Scandinavian Journal of Food and Nutrition 50: 17–20. Albalat A, Saera-Vila A, Capilla E, Gutierrez J, Perez-Sanchez J, Navarro I. (2007) Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 148: 151–159. Alexis MN (1997) Fish meal and fish oil replacers in Mediterranean marine fish diets. CIHEAM – Options Mediterraneennes 22: 183–204. Almaida-Paga´n PF, Herna´ndez MD, Garcı´a Garcı´a B, Madrid JA, De Costa J, Mendiola P (2007) Effects of total replacement of fish oil by vegetable oils on n-3 and n-6 polyunsaturated fatty acid desaturation and elongation in sharpsnout seabream (Diplodus puntazzo) hepatocytes and enterocytes. Aquaculture 272: 589–598. Amri EZ, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA. (1995) Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. The Journal of Biological Chemistry 270: 2367–2371. Andersen O, Eijsink VGH, Thomassen M. (2000) Multiple variants of the peroxisome proliferator-activated receptor (PPAR) γ are expressed in the liver of Atlantic salmon (Salmo salar). Gene 255: 411–418. Ando S, Xue XH, Tibbits GF, Haunerland NH. (1998) Cloning and sequencing of complementary DNA for fatty acid binding protein from rainbow trout heart. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology 119: 213–217. AOAC (Association of Official Analytic Chemists) (1984) Horwitz W. (ed). Official Methods of Analysis. 13th edition. Washington DC, USA. Arterburn LM, Hall EB, Oken H. (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. American Journal of Clinical Nutrition 83: 1467S–1476S. Arzel J, Martinez Lopez FX, Metailler R, Stephan G, Viau M, Gandemer G. (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta) reared in seawater. Aquaculture 123: 361–375. Badillo-Zapata D, Correa-Reyes G, D’Abramo LR, Lazo JP, Toro-Vázquez JF, Viana MT. (2010) Effect of replacing dietary fish oil with vegetable oils on the fatty acid composition of muscle tissue of juvenile California halibut (Paralichthys californicus) Ciencias Marinas 36: 121–133. Bahurmiz OM, Ng WK. (2007) Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size. Aquaculture 262: 382–392. Barbaras R, Grimaldi P, Negrel R, Ailhaud G. (1985) Binding of lipoproteins and regulation of cholesterol synthesis in cultured mouse adipose cells. BBA - Molecular Cell Research 845: 492–501. Basiron Y. (2007) Palm oil production through sustainable plantations. European Journal of Lipid Science and Technology 109: 289–295. Bastie C, Holst D, Gaillard D, Jehl-Pietri C, Grimaldi PA. (1999) Expression of peroxisome proliferator-activated receptor PPAR delta promotes induction of PPAR gamma and adipocyte differentiation in 3T3C2 fibroblasts. The Journal of Biological Chemistry 274: 21920–21925. Batista-Pinto C, Rodrigues P, Rocha E, Lobo-da-Cunha A. (2005) Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. fario). Biochimica et Biophysica Acta 1731: 88–94. Bell JG, Dick JR, Mc Vicar AH, Sargent JR, Thompson KD. (1993) Dietary sunflower, linseed and fish oils affect phospholipid fatty acid composition, development of cardiaclesions, phospholipase activity and eicosanoid production in Atlantic salmon. Prostaglandins, Leukotrienes and Essential Fatty Acids 49: 665–673. Bell JG, Farndale BM, Dick JR, Sargent JR. (1996) Modification of membrane fatty acid composition, eicosanoid production, and phospholipase A activity in Atlantic salmon (Salmo salar) gill and kidney by dietary lipid. Lipids 31: 1163–1171. Bell JG, Ghioni C, Sargent JR. (1994a) Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): a comparison with commercial diets. Aquaculture 128: 301–313. Bell JG, Henderson RJ, Tocher DR, McGhee F, Dick JR, Porter A, Smullen RP, Sargent JR. (2002) Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. Journal of Nutrition 132: 222–230. Bell JG, Henderson RJ, Tocher DR, McGhee F, Dick JR, Porter A. (2002) Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. The Journal of Nutrition 132: 222–230. Bell JG, Mc Vicar AH, Park MT, Sargent JR. (1991b) High dietary linoleic acid affects the fatty acid compositions of individual phospholipids from tissues of Atlantic salmon (Salmo salar): association with stress susceptibility and cardiaclesions. The Journal of Nutrition 121: 1163–1172. Bell JG, McEvoy J, Tocher DR, McGhee F, Campbell PJ, Sargent JR. (2001) Replacement of fish oil with rape seed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of Nutrition 131: 1535–1543. Bell JG, McGhee F, Campbell PJ, Sargent JR. (2003a) Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acid composition and effectiveness of subsequent fish oil ‘‘wash out’’. Aquaculture 218: 515–528. Bell JG, McGhee F, Dick JR, Tocher DR. (2005) Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquaculture 243: 305–314. Bell JG, Raynard RS, Sargent JR. (1991a) The effect of dietary linoleic acid on the fatty acid composition of individual phospholipids and lipoxygenase products from gills and leucocytes of Atlantic salmon (Salmo salar). Lipids 26: 445–450. Bell JG, Sargent JR, Raynard RS. (1992) Effects of increasing dietary linoleic acid on phospholipid fatty acid composition and eicosanoid production in leucocytes and gill cells of Atlantic salmon (Salmo salar). Prostaglandins, Leukotrienes and Essential Fatty Acids 45: 197–206. Bell JG, Strachan F, Good JE, Tocher DR. (2006) Effect of dietary echium oil on growth, fatty acid composition and metabolism, gill prostaglandin production and macrophage activity in Atlantic cod (Gadus morhua L.). Aquaculture Research 37: 606–617. Bell JG, Tocher DR, Farndale BM, Cox DI, McKinney RW, Sargent JR. (1997) The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr–smolt transformation. Lipids 35: 515–525. Bell JG, Tocher DR, Farndale BM, McVicar AH, Sargent JR. (1999) Effects of essential fatty aciddeficient diets on growth, mortality, tissue histopathology and fatty acid compositions in juvenile turbot (Scophtalmus maximus). Fish Physiology and Biochemistry 20: 263–277. Bell JG, Tocher DR, Henderson RJ, Dick JR, Crampton VO. (2003b) Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. The Journal of Nutrition 133: 2793–2801. Bellardi S, Bianchini ML, Domenis L, Palmegiano GB. (1995) Effect of feeding schedule and feeding rate on size and number of adipocytes in rainbow trout Oncorhynchus mykiss. Journal of the World Aquaculture Society 26: 80–83. Belmonte N, Phillips BW, Massiéra F, Villageois P, Wdziekonski B, Saint-Mare, P. (2001) Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins β and –δ in preadipocytes. Molecular Endocrinology 15: 2037–2049. Bendiksen EA˚, Berg OK, Jobling M, Arnesen AM, Ma˚søval K. (2003) Digestibility, growth and nutrient utilisation of Atlantic salmon (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture 224: 283–299. Berge GM, Witten PE, Baeverfjord G, Vegusdal A, Wadsworth S, Ruyter B. (2009) Diets with different n-6/n-3 fatty acid ratio in diets for juvenile Atlantic salmon, effects on growth, body composition, bone development and eicosanoid production. Aquaculture 296: 299-308. Bernlohr DA, Jenkins AE, Bennaars AA. (2004) Adipose tissue and lipid metabolism: Biochemistry of Lipids, Lipoproteins and Membranes. 4th edition, Volume 36 (Ed, Vance, D.E. & Vance, J.E., General Ed Benardi, G.) pp. 236–289. Boone C, Gregoire F, Remacle C. (2000) Regulation of porcine adipogenesis in vitro, as compared with other species. Domestic Animal Endocrinology 17: 257–267. Boukouvala E, Antonopoulou E, Favre-Krey L, Diez A, Bautista JM, Leaver MJ, Tocher DR, Krey G. (2004) Molecular Characterization of three peroxisome proliferator-activated receptors from the sea bass (Dicentrarchus labrax). Lipids 39: 1085–1092. Bouraoui L. Gutiérrez J. Navarro I. (2008) Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss). Journal of Endocrinology 198: 459–469. Bowyer JN, Qin JG, Smullen RP, Stone DAJ. (2012) Replacement of fish oil by poultry oil and canola oil in yellowtail kingfish (Seriola lalandi) at optimal and suboptimal temperatures. Aquaculture 356: 211–222 Brandebourg TD, Hu CY. (2005) Regulation of differentiating pig preadipocytes by retinoic acid. Journal of Animal Science 83: 98–108. Braun JE, Severson DL. (1992) Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochemical Journal 287: 337-347. Briggs JC. (1960) Fishes of worldwide (circumtropical) distribution. Copeia 3: 171–180. Brun RP, Spiegelman BM. (1997) PPAR gamma and the molecularcontrol of adipogenesis. Journal of Endocrinology 155: 217–218. Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, Spiegelman BM. (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes & Development 10: 974–984. Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo M. (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Onchorhynchus mykiss. Aquaculture 214: 253–271. Caballero MJ, Obach A, Roswnlud G, Montero D, Gisvold M, Izquierdo MS. (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214: 253-271. Cao JM, Liu YJ, Lao CL, Tian LX, Liang GY. (1997) Effect of dietary fatty acids on tissue lipid content and fatty acid composition of grass carp. Acta Zoonurimenta Sinica 9: 36–44. Caprino F, Moretti VM, Bellagamba F, Turchini GM, Busetto ML, Giani I. (2008) Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus). Analytica Chimica Acta 617: 139–147. Carling D. (2004) The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochemistry Science 29: 18–24. Cartwright M J, Schlauch K, Lenburg ME, Tchkonia T, Pirtskhalava T, Cartwright A, Thomou T, Kirkland JL. (2010) Aging, depot origin, and preadipocyte gene expression. Journals of gerontology Series A: Biological sciences and medical sciences 65: 242–251. Celis JE, Madsen P. (1986) Increased nuclear cyclin/PCNA actigen staining of non S-phase transformed human amnion cells engaged in nucleotide excision DNA repair. FEBS Letters 209: 277–283. Chan SL, Miao M, Fletcher GL, Hew CL. (1997) The role of CCAAT/enhancerbinding protein alpha and a protein that binds to the activator-protein-1 site in the regulation of liver-specific expression of the winter flounder antifreeze protein gene. European Journal of Biochemistry 247: 44–51. Chang W, Rickers-Haunerland J, Haunerland NH. (2001) Induction of cardiac FABP gene expression by long chain fatty acids in cultured rat muscle cells. Molecular and Cellular Biochemistry 221: 127–132. Chascione C, Elwyn DH, Davila M, Gil KM, Askanazi J, Kinney JM. (1987) Effect of carbohydrate intake on de novo lipogenesis in human adipose tissue. American Journal of Physiology 253: E664–669. Chawla A, Lazar MA. (1994) Peroxisome proliferator and retinoid signaling pathways coregulate preadipocyte phenotype and survival. Proceedings of the National Academy of Sciences 91: 1786–1790. Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. (2006) HNF factors form a network to regulate liver-enriched genes in zebrafish. Developmental Biology 294: 482–496. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. Journal of Clinical Investigation 107: 813–822. Chou RL, Her BY, Su MS, Hwang G, Wu YH, Chen HY. (2004) Substituting fish mal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229: 325-333. Clarke SD, Jump DB. (1993) Regulation of hepatic gene expression by dietary fats: a unique role for polyunsaturated fatty acids. In: Nutrition and gene expression. Berdanier CD, Hargrove JL.(eds). Boca Raton, Florida: CRC Press pp. 227–245. Clarke SD, Turini M, Jump D. (1997) Polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 mRNA content. Journal of Nutrition 120: 225–231. Clarke SD, Turini M, Jump D. (1997) Polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 mRNA content. Journal of Nutrition 120: 225–231. Coburn CT, Hajri T, Ibrahimi A, Abumrad NA. (2001) Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. Journal of Molecular Neuroscience 16: 117–121. Coe RN, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA. (1999) The fatty acid transport protein (FATP) is a very long-chain acyl-CoA synthetase. The Journal of Biological Chemistry 274: 36300–36304. Corton JM, Gillespie JG, Hawley SA, Hardie DG. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? European Journal of Biochemistry 229: 558–565. Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F. (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. International Journal of Obesity 21: 637–643. Craig SR, Gatlin MI. (1995) Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition. The Journal of Nutrition 125: 3041–3048. Cruz-Garcia L, Sánchez-Gurmaches J, Bouraoui L, Saera-Vila A, Pérez-Sánchez J, Gutiérrez J, Navarro I. (2011) Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.) Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 158: 391–399. Darimont C, Vassaux G, Ailhaud G, Negrel R. (1994) Differentiaiton of preadipose cells: paracrine role of prostacycline upon stimulation of adipose cells by angiotensin-II. Endocrinology 135: 2030–2036. De VP, Lefebvre AM, Miller SG, Guerre-Millo M, Wong K, Saladin R, Hamann LG, Staels B, Briggs MR, Auwerx J. (1996) Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. Journal of Clinical Investigation 98: 1004–1009. Desvergne B, Michalik L, Wahli W. (2006) Transcriptional regulation of metabolism. Physiological Reviews 86: 465–514. Desvergne B, Wahli W. (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews 20: 649–688. Devers M, Soulas G, Martin-Laurent F. (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. Journal of Microbiological Methods 56: 3-15. Ding ST, McNeel RL, Mersmann HJ. (1999) Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo. Comparative Biochemistry and Physiology Part B 123: 307–318. Ding ST, McNeel RL, Mersmann HJ. (2002) Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In Vitro Cellular and Developmental Biology - Animal 38: 352–357. Ding ST, McNeel RL, Smith EO, Mersmann HJ. (2000) Conjugated linoleic acid invreases the differentiation of porcine adipocytes in vitro. Nutrition Research 20: 1569–1580. Ding ST, Mersmann HJ. (2001) Fatty acids modulate porcine adipocyte differentiation and transcripts for transcription factors and adipocyte-characteristic proteins. The Journal of Nutritional Biochemistry 12: 101–108. Ding ST, Wang JC, Mersmann HJ. (2003) Effect of unsaturated fatty acid on porcine adipocyte differentiation. Nutrition Research 23: 1059-1069. Ding Z, Xu Y, Zhang H, Wang S, Chen W, Sun Z. (2009) No significant effect of additive ratios of docosahexaenoic acid to eicosapentaenoic acid on the survival and growth of cobia (Rachycentron canadum) juvenile. Aquaculture Nutrition 15: 254–261. Ditty JC, Shaw RF. (1992) Larval development, distribution, and ecology of cobia Rachycentron canadum (Family: Rachycentridae) in the northern Gulf of Mexico. Fishery Bulletin 90: 668–677. Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, Gonzalez FJ, Kelly DP. (1998) A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. Journal of Clinical Investigation 102: 1083–1091. Du ZY, Clouet P, Huang LM, Degrace P, Zheng WH, He JG. (2008) Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation. Aquaculture Nutrition 14: 77–92. Duplus E, Glorian E, Forest C. (2000) Fatty acid regulation of gene transcription. Journal of Biological Chemistry 275: 30749–30752. Escriva H, Delaunary F, Laudet V. (2000) Lignd binding and nuclear receptor evolution. Bioessays 22: 717–727. FAO (Food and Agriculture Organization of the United Nations) (2007a). State of World Aquaculture 2006. FAO Fisheries Technical Paper No. 500. FAO Fisheries Department; Food and Agriculture Organization of the United Nations, Rome. FAO (Food and Agriculture Organization of the United Nations) (2007b) Use of Wild Fish and ⁄ or Other Aquatic Species to Feed Cultured Fish and its Implications to Food Security and Poverty Alleviation. FAO Expert Workshop. FAO Fisheries Department, Food and Agriculture Organization of the United Nations and Marine Export Development Authority, Government of India, 16–18 November 2007, Kochi, India. Fauconneau B, Andre S, Chmaitilly J, Lebail PY, Krieg F, Kaushik SJ. (1997) Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. Journal of Fish Biology 50: 296–314. Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF Silverstein RL. (1999) A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. The Journal of Biological Chemistry 274: 19055–19062 Fernyhough ME, Vierck JL, Hausman GJ, Mir PS, Okine EK, Dodson MV. (2004) Primary adipocyte culture: adipocyte purification methods may lead to a new understanding of adipose tissue growth and development. Cytotechnology 46: 163-172. Fève B, Moldes M, El-Hadri K, Lasnier F, Pairault J. (1998) La différenciation adipocytaire: tout un programme. Médecine/Sciences 14: 848–857. Fève B. (2005) Adipogenesis: cellular and molecular aspects. Best Practice & Research Clinical Endocrinology & Metabolism 19: 483–499. Field CJ, Ryan EA, Thomson AB, Clandinin MT. (1990) Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. The Journal of Biological Chemistry 265: 11143–11150. Fielding BA, Frayn KN. (1998) Lipoprotein lipase and the disposition of dietary fatty acids. The British Journal of Nutrition 80: 495–502. Figueiredo-Silva A, Rocha E, Dias J, Silva P, Rema P, Gomes E. (2005) Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Nutrition 11: 147–155. Flachs P, Horakova O, Brauner P. (2005) Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 48: 2365–2375. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. (2009) Cellular and molecular effects of n-3 polyunsaturated fatty acids in adipose tissue biology and metabolism. Clinical Science 116: 1–16. Forman BM, Chen J, Evans RM. (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proceedings of the National Academy of Sciences 94: 4312–4317. Fountoulaki E, Vasilaki A, Hurtado R, Grigorakis K, Karacostas I, Nengas I, Rigos G, Kotzamanis Y, Venou B, Alexis MN. (2009) Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures. Aquaculture 289: 317–326. Francis DS, Turchini GM, Jones PL, De Silva SS. (2007a) Dietary lipid source modulates in vivo fatty acid metabolism in the freshwater fish, Murray cod (Maccullochella peelii peelii). Journal of Agricultural and Food Chemistry 55: 1582–1591. Francis DS, Turchini GM, Jones PL, De Silva SS. (2007b) Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, Maccullochella peelii peelii. Aquaculture 269: 447–455. Freytag SO, Paielli DL, Gilbert JD. (1994) Ectopic expression of the CCAAT/enhancer-binding promotes the adipogenic progan in a variety of mouse fibroblastic cells. Genes & Development 14: 1654–1663. Froyland L, Madsen L, Vaagenes H. (1997) Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. Journal of Lipid Research 38: 1851–1858. Fujiki K, Gerwick L, Bayne CJ, Mitchell L, Gauley J, Bols N, Dixon B. (2003) Molecular cloning and characterization of rainbow trout (Oncorhynchus mykiss) CCAAT/enhancer binding protein beta. Immunogenetics 55: 253–261. Gaber MMA. (1996) Effect of oil source on growth, feed conversion and body composition of Nile tilapia (Oreochromis niloticus). Annals of Agricultural Science 34: 1549–1562. Gargiulo CE, Stuhlsatz-Krouper SM, Schaffer JE. (1999) Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. The Journal of Lipid Research 40: 881–892. Gerhart J, Kirschner M. (1997) Cells, Embryos, and Evolution. Blackwell Science, Malden, MA. Ginzinger DG. (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Experimental Hematology 30: 503-512. Glencross BD, Hawkins WE, Curnow JG. (2003a) Evaluation of canola oils as alternative lipid resources in diets for juvenile red seabream, Pagrus auratus. Aquaculture Nutrition 9: 305–315. Gonzales AM, Orlando RA. (2007) Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy. Nutrition and Metabolism 4: 22–30. Gottlicher M, Demoz A, Svensson D, Tollet P, Berge RK, Gustafsson JÅ. (1993) Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochemical Pharmacology 46: 2177–2184. Grant AAM, Baker D, Higgs DA, Brauner CJ, Richads JG, Balfry SK, Schulte PM. (2008) Effects of dietary canola oil level on growth, fatty acid composition and osmoregulatory ability of juvenile fall Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 277: 303–312. Green H, Meuth M. (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3: 127–133. Greene DHS, Selivonchick DP. (1990) Effects of dietary vegetable, animal and marine lipids on muscle lipid and haematology of rainbow trout (Oncorhynchus mykiss). Aquaculture 89: 165–182. Grégoire FM, Smas CM, Sul HS. (1998) Understanding adipocyte differentiation. Physiological Reviews 78: 783–809. Gregory MK, King HW, Bain PA, Gibson RA, Tocher DR, Schuller KA. (2011) Development of a fish cell culture model to investigate the impact of fish oil replacement on lipid peroxidation. Lipids 46: 753–764. Grimaldi PA. (2007) Regulatory functions of PPARβ in metabolism: Implicatins for the treatment of metabolic syndrome. Biochimica et Biophysica Acta 1771: 983–990. Guilde AJ, Karin AJM, Willemsen PHM, Chinetti G, Feike R, Ger J. (2003) Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism. Circulation Research 92: 518–24. Guillou A, Soucy P, Khalil M, Adambounou L. (1995) Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr (Salvelinus fontinalis). Aquaculture 136: 351–362. Gunasekera RM, Leelarasamee K, De Silva SS. (2002) Lipid and fatty acid digestibility of three oil types in the Australian shortfin eel, Anguilla australis. Aquaculture 203: 335–347. Guo W, Choi JK, Kirkland JL, Corkey BE, Hamilton JA. (2000) Esterification of free fatty acids in adipocytes: a comparison between octanoate and oleate. Biochemical Journal 349: 463–471. Habinowski SA, Witters LA. (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochemistry Biophysiology Research Communication 286: 852–856. Hanhoff T, Lucke C, Spener F. (2002) Insights into binding of fatty acids by fatty acid binding proteins. Molecular and Cellular Biochemistry 239: 45–54. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K. (2001) Peroxisome proliferator activated receptor delta (PPARdelta)-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. The Journal of Biological Chemistry 276: 3175–3182. Haugen T, Kiessling A, Olsen RE, Rora MB, Slinde E, Nortvedt R. (2006) Seasonal variations in muscle growth dynamics and selected quality attributes in Atlantic halibut (Hippoglossus hippoglossus L.) fed dietary lipids containing soybean and ⁄ or herring oil under different rearing regimes. Aquaculture 261: 565–579. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. Journal of Clinical Investigation 84: 1663–1670. Hausman GJ, Poulos SP. (2005) A method to establish co-cultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles. Journal of Animal Science 83: 1010–1016. Henderson RJ, Sargent JR. (1985) Chain-length specificities of mitochondrial and peroxisomal b-oxidation of fatty acids in livers of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology B 82: 79–85. Higgs DA, Balfry SK, Oakes JD, Rowshandeli M, Skura BJ, Deacon G. (2006) Efficacy of an equal blend of canola oil and poultry fat as an alternate dietary lipid source for Atlantic salmon (Salmo salar L.) in sea water. I: effects o growth performance, and whole body and fillet proximate and lipid composition. Aquaculture Research 37: 180–191. Higgs DA, Dong FM. (2000) Lipids and fatty acids. In: Stickney RR (ed.) Encyclopedia of Aquaculture, John Wiley & Sons, New York, pp. 476–496. Hoffman LC, Prinsloo JF. (1995) The influence of different dietary lipids on the growth and body composition of the African sharptooth catfish, Clarias gariepinus (Burchell). South African Journal of Science 91: 315–320. Houseknecht KL, Cole BM, Steele PJ, (2002) Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: A review. Domestic Animal Endocrinology 22: 1–23. Houseknecht KL, Cole BM, Steele PJ. (2002) Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: A review. Domestic Animal Endocrinology 22: 1–23. Hsu JM, Ding ST. (2003) Effect of polyunsaturated fatty acids on the expression of transcription factor adipocyte determination and differentiation-dependent factor 1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes. British Journal of Nutrition 90: 507–513. Hu E, Tontonoz P, Spiegelman BM. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proceedings of the National Academy of Sciences 92: 9856–9860. Huang CH, Huang MC, Hou PC. (1998) Effect of dietary lipids on fatty acid composition and lipid peroxidation in sarcoplasmic reticulum of hybrid tilapia, Oreochromis niloticus x O. aureus. Comparative Biochemistry and Physiology B 120:331–336. Huang SSY, Fu CHL, Higgs DA, Balfry SK, Schunlte PM, Brauner CJ. (2008) Effects of dietary canola oil level on growth performance, fatty acid composition and ion regulatory development of spring Chinook salmon parr, Oncorhynchus tshawytscha. Aquaculture 274: 109–117. Huang SSY, Oo AN, Higgs DA, Brauner CJ, Satoh S. (2007) Effect of dietary canola oil level on the growth performance and fatty acid composition of juvenile red sea bream, Pagrus major. Aquaculture 271: 420–431. Huang TS, Todorčević M, Ruyter B, Torstensen BE. (2010) Altered expression of CCAAT/enhancer binding protein and FABP11 genes during adipogenesis in vitro in Atlantic salmon (Salmo salar). Aquaculture Nutrition 16: 72–80. Ibabe A, Bilbao E, Cajaraville MP. (2005) Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochemistry and Cell Biology 123: 75–87. IFFO (International Fishmeal and Fish Oil Organisation) (2013) IFFO Update No. 187, January 2013. IndexMundi Co. Fishmeal Monthly Price - US Dollars per Metric Ton. http://www.indexmundi.com/commodities/?commodity=fish-meal Nov 2012 - May 2013. Izquierdo MS, Montero D, Robaina L, Caballero R, Rosenlund G, Gine´s R. (2005) Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250: 431–444. Izquierdo MS, Obach A, Arantzamendi L, Montero D, Robaina L, Rosenlund G. (2003) Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition 9: 397–407. Jo Y, Oh JH, Yoon S, Bae H, Hong MC, Shin MK, Kim YS. (2012) The comparative analysis of in vivo and in vitro transcriptome data based on systems biology. BioChip Journal 6: 280–292. Jordal A-EO, Hordvik I, Pelsers M, Bernlohr DA, Torstensen BE. (2006) FABP3 and FABP10 in Atlantic salmon (Salmo salar L.), general effects of dietary fatty acid composition, and life cycle variations. Comparative Biochemistry and Physiology B 145: 147–158. Jordal A-EO, Lie Ø, Torstensen BE. (2007) Complete replacement of dietary fish oil with a vegetable oil blend affect liver lipid and plasma lipoprotein levels in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition 13: 114–130. Jump DB. (2002) The biochemistry of n-3 polyunsaturated fatty acid. Journal of Biological Chemistry 277: 8755–8758. Kakiuchi-Kiyota S, Vetro JA, Suzuki S, Varney ML, Han HY, Nascimento M, Pennington KL, Arnold LL, Singh RK, Cohen SM. (2009) Effects of the PPARγ agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse. Toxicology and Applied Pharmacology 237: 83–90. Kalogeropoulos N, Alexis MN, Henderson RJ. (1992) Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 104: 293–308. Kanazawa A, Teshima S, Sakamoto M, Awal MA. (1980) Requirements of Tilapia zillii for essential fatty acids. Bulletin of the Japanese Society for Scientific Fisheries 46: 1353–1356. Karalazos V, Bendiksen EA˚, Dick JR, Bell JG. (2007) Effects of dietary protein, and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures. Aquaculture Nutrition 13: 256–265. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences 90: 2160–2164. Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS. (2007) PPARγ regulates adipose triglyceride lipase in adipocytes in vitro and in vivo. American Journal of Physiology - Endocrinology and Metabolism 293: E1736–E1745. Kilgore KS, Billin AN. (2008) PPAR β/δ ligands as modulators of the inflammatory response. Current Opinion in Investigational Drugs 9: 463–469. Kim HK, Della-Fera M, Baile CA. (2006) Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. The Journal of Nutrition 136: 2965–296. Kim HK, la-Fera M, Lin J, Baile CA. (2006) Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. Journal of Nutrition 136: 2965–2969. Kim J, Sarraf P, Wright M, Yao KM, Meuller E, Solanes G, Lowell BB, Spiegelman BM. (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. Journal of Clinical Investigation 101: 1–9. Kjær MA, Vegusdal A, Gjøen J, Rustan AC, Todorcčvić M, Ruyter B. (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochimica et Biophysica Acta 1781: 112–122. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM. (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator- activated receptors alpha and gamma. Proceedings of the National Academy of Sciences 94: 4318–4323. Kondo H, Misaki R, Gelman L, Watabe S. (2007) Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. General and Comparative Endocrinology 154: 120–127. Kostadinova R, Wahli W, Michalik L. (2005) PPARs in diseases: control mechanisms of inflammation. Current Medicinal Chemistry 12: 2995–3009. Kowenz-Leutz E, Leutz A. (1999) A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Molecular Cell 4: 735–743. Krebs JD, Browning LM, McLean NK. (2006) Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. International Journal of Obesity 30: 1535–1544. Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M, Parker MG. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Molecular Endocrinology 11: 779–791. Kristen J, Nadeau J, Wayne L, Inga G, Boris D. (2004) Insulin regulation of sterol regulatory element-binding protein-1 expression in L-6 muscle cells and 3T3L1 adipocytes. The Journal of Biological Chemistry 279: 34380– 34387. Lai YS, Murali S, Ju HY, Wu MF, Guo IC, Chen SC, Fang K, Chang CY. (2000) Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases 23: 379–388. Leaf A, Kang JX. (1996) Prevention of cardiac sudden death by N-3 fatty acids: a review of the evidence. Journal of Internal Medicine 240: 5–12. Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G. (2005) Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146: 3150–3162. Leaver MJ, Villeneuve LA, Obach A, Jensen L, Bron JE, Tocher DR, Taggart JB. (2008) Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar). BMC Genomics 9: 299. Lee SM, Lee JH, Kima KD. (2003) Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Platichthys stellatus). Aquaculture 225: 269–281. Legendre M, Kerdchuen N, Corraze G, Bergot P. (1995) Larval rearing of an African catfish, Heterobranchus longifilis (Teleostei, Clariidae): effect of dietary lipids on growth, survival and fatty acid composition of fry. Aquatic Living Resources 8: 355–363. Lengqvist J, Mata DU, Bergman AC. (2004) Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Molecular Cell Proteomics 3: 692–703. Li WD, Lee JH, Price RA. (2000) The peroxisome proliferator-activated receptor gamma 2 Pro12Ala mutation is associated with early onset extreme obesity and reduced fasting glucose. Molecular Genetics and Metabolism 70: 159–161. Li Y, Lu RH, Luo GF, Pang WJ, Yang GS. (2006) Effects of different cryoprotectants on the viability and biological characteristics of porcine preadipocyte. Cryobiology 53: 240–247. Li Y. (2012) Establishment and evaluation of a new model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes. In Vitro Cellular & Developmental Biology - Animal 48: 37–42. Liang XF, Ogata HY, Oku H. (2002a) Effect of dietary fatty acids on lipoprotein lipase gene expression in the liver and visceral adipose tissue of fed and starved red sea bream Pagrus major. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 132: 913–919. Liang XF, Oku H, Ogata HY. (2002b) The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 131: 335–342. Liao IC, Huang TS, Tsai WS, Hsueh CM, Chang SL, Leaño EM. (2004) Cobia culture inTaiwan: current status and problems. Aquaculture 237:155–165. Lie Ø, Lied E, Lambertsen G. (1986) Liver retention of fat and of fatty acids in cod (Gadus morhua) fed different oils. Aquaculture 59: 187–196. Lie Ø, Sandvin A,Waagbø R. (1993) Influence of dietary fatty acids on the lipid composition of lipoproteins in farmed atlantic salmon (Salmo salar). Fish Physiology and Biochemistry 12: 249–260. Lim PK, Boey PL, Ng WK. (2001) Dietary palm oil level affects growth performance, protein retention and tissue vitamin E concentration of African catfish, Clarias gariepinus. Aquaculture 202: 101–112. Lin HZ, Liu YJ, He JG, Zheng WH, Tian LX. (2007) Alternative vegetable lipid sources in diets for grouper, Epinephelus coioides (Hamilton): effects on growth, and muscle and liver fatty acid composition. Aquaculture Research 38: 1605–1611. Lin Q, Ruuska SE, Shaw NS, Dong D, Noy N. (1999) Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry 38: 185–190. Lin YH, Shiau SY. (2007) Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutrition 13: 137–144. Lindberg A, Olivecrona G. (2002) Lipoprotein lipase from rainbow trout differs in several aspects from the enzyme in mammals. Gene 292: 213–223. Liu LH, Wang XK, Hu YD, Kang JL, Wang LL, Li S. (2004) Effects of a fatty acid synthase inhibitor on adipocyte differentiation of mouse 3T3-L1 cells. Acta Pharmacologica Sinica 25: 1052–1057. Liu M, Huang HY. (2010) Identification and validation of novel C/EBPβ-regulated genes in preadipocyte proliferation. Chinese Medical Journal 123: 1190–1194. Liu TX, Rhodes J, Deng M, Hsu K, Radomska HS, Kanki JP, Tenen DG, Look AT. (2007) Dominant-interfering C/EBP alpha stimulates primitive erythropoiesis in zebrafish. Experimental Hematology 35: 230–239. Loffler G, Hauner H. (1987) Adipose tissue development: the role of precursor cells and adipogenic factors. Part II: the regulation of the adipogenic conversion by hormones and serum factors. Klinische Wochenschrift 65: 812–817. Lombardo YB., Hein G, Chicco A. (2007) Metabolic syndrome: effects of n-3 PUFAs on a model of dyslipidemia, insulin resistance and adiposity. Lipids 42: 427–437. Luquest S, Lopez-Soriano J, Holst D, Gaudel C, Jehl-Pietri C, Fredenrich A, Grimaldi PA. (2004) Roles of peroxisome proliferator-activated receptor delta (PPARδ) in the control of fatty acid catabolism. Anew target for the treatmet of metabolic syndrome. Biochimie 86: 833–837. Luzzana U, Scolari M, Campo Dall’Orto B, Caprino F, Turchini G, Orban E. (2003) Growth and product quality of European eel (Anguilla anguilla) as affected by dietary protein and lipid sources. Journal of Applied Ichthyology 19: 74–78. Lyons SE, Shue BC, Lei L, Oates AC, Zon LI, Liu PP. (2001a) Molecular cloning, genetic mapping, and expression analysis of four zebrafish c/ebp genes. Gene 281: 43–51. Lyons SE, Shue BC, Oates AC, Zon LI, Liu PP. (2001b) A novel myeloid-restricted zebrafish CCAAT/enhancer-binding protein with a potent transcriptional activation domain. Blood 97: 2611–2617. Madsen L, Petersen BK, Kristiansen K. (2005) Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochimica et Biophysica Acta 1740: 266–286. Malaysian Palm Oil Board (2005) Malaysian Oil Palm Statistics 2005. Malaysian Palm Oil Board, Selangor. Martin G, Nemoto M, Gelman L, Geffroy S, Najib J, Fruchart J, Roevens P, Martinville B de, Deeb S, Auwerx J. (2000) The human fatty acid transport protein-1 (SLC27A1; FATP-1) cDNA and gene: organization, chromosomal localization, and expression. Genomics 66: 296–304. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. The Journal of Biological Chemistry 272: 28210–28217. Martino RC, Cyrino JEP, Ports L, Trugo LC. (2002) Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquaculture 209: 233–246. Martins DA, Gomes E, Rema P, Dias J, Ozo´rio ROA, Valente LMP. (2006) Growth, digestibility and nutrient utilization of rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax) juveniles fed different dietary soybean oil levels. Aquaculture International 14: 285–295. Matsusue K, Peters JM, Gonzalez FJ. (2004) PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. Federation of American Societies for Experimental Biology Journal 18: 1477–1479. McNeel RL, Ding ST, Smith E, Mersmann HJ. (2000) Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 126: 291–302. Menoyo D, Izquierdo MS, Robaina L, Gine´s R, Lopez-Bote CJ, Bautista JM. (2004) Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. British Journal of Nutrition 92: 41–52. Menoyo D, López-Bote CJ, Obach A, Bautista JM. (2005) Effect of dietary fish oil substitution with linseed oil on the performance, tissue fatty acid profile, metabolism, and oxidative stability of Atlantic salmon. Journal of Animal Science 83: 2853–2862. Mikula M, Dzwonek A, Jagusztyn-Krynicka K, Ostrowski J. (2003) Quantitative detection for low levels of Helicobacter pylori infection in experimentally infected mice by real-time PCR. Journal of Microbiological Methods 55: 351–359. Miller MR, Nichols PD, Carter CG. (2008) n-3 Oil sources for use in aquaculture-alternatives to the unsustainable harvest of wild fish. Nutrition Research Reviews 21: 85–96. Mills S. (2000) Beta-adrenergic receptor subtypes mediating lipolysis in porcine adipocytes. Studies with BRL-37344, a putative β 3-adrenergic agonist. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology 126: 11–20. Mizushima Y, Tanaka N, Yagi H, Kurosawa T, Onoue M, Seto H, Horie T, Aoyagi N, Yamaoka M, Matsukage A. (1996) Fatty acids selectively inhibit eukaryotic DNA polymerase activities in vitro. Biochimica et Biophysica Acta 1308: 256–262. Molna´r T, Szabo´ A, Szabo´ G, Szabo´ C, Hancz C. (2006) Effect of different dietary fat content and fat type on the growth and body composition of intensively reared pikeperch Sander lucioperca (L.). Aquaculture Nutrition 12: 173–182. Montalto MB, Bensadoun A. (1993) Lipoprotein lipase synthesis and secretion: effects of concentration and type of fatty acids in adipocyte cell culture. Journal of Lipid Research 34: 397–407. Montero D, Grasso B, Izquierdo M, Real F, Tort L, Caballero MJ. (2008) Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: effects on hepatic Mx expression and some immune parameters. Fish and Shellfish Immunology 24: 147–155. Montero D, Robaina L, Caballero R, Gine´s R, Izquierdo MS. (2005) Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture 248: 121–134. Morgan IJ, McCarthy ID, Metcalfe NB. (2002) The influence of life-history strategy on lipid metabolism in overwintering juvenile Atlantic salmon. Journal of Fish Biology 60: 674–686. Mørkøre T, Netteberg C, Johnsson L, Pickova J. (2007) Impact of dietary oil source on product quality of farmed Atlantic cod, Gadus morhua. Aquaculture 267: 236–247. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. (1998) Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273: 16710–16714. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. (1998) Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273: 16710–16714. Mourente G, Bell JG, Tocher DR. (2007) Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiology and Biochemistry 33: 269–280. Mourente G, Bell JG. (2006) Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on muscle and liver fatty acid composition and effectiveness of a fish oil finishing diet. Comparative Biochemistry and Physiology B 145: 389–399. Mourente G, Dick JR, Bell JG, Tocher DR. (2005a) Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and b-oxidation of [1-14C]18:3n-3 (LNA) and [1-14C]20:5n-3 (EPA) in hepatocytes and enterocytes of European sea bass (Dicentratchus labrax L.). Aquaculture 248: 173–186. Moustaid N, Jones BH, Taylor JW. (1996) Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. Journal of Nutrition 126: 865–870. Mukhopadhyay PK, Mishra S. (1998) Effect of feeding different lipid souces on growth, feed efficiency and tissue fatty acid composition of Clarias batrachus fry and fingerling. Journal of Applied Ichthyology 14: 105–107. Murphy MC, Zampelas A, Puddicombe SM, Furlonger NP, Morgan LM, Williams CM. (1993) Pretranslational regulation of the expression of the lipoprotein lipase (EC 3.1.1.34) gene by dietary fatty acids in the rat. The British Journal of Nutrition 70: 727–736. Nakatani H, Aoki N, Okajima T, Nadano D, Flint DJ, Matsuda T. (2010) Establishment of a mammary stromal fibroblastic cell line for in vitro studies of mammary adipocyte differentiation. Biology of Reproduction 82: 44–53. Nanton DA, Vegusdal A, Benze-Røraa AM, Ruyter B, Baeverfjord G, Torstensen BE. (2007) Muscle lipid storage pattern, composition, and adipocyte distribution in different parts of Atlantic salmon (Salmo salar) fed fish oil and vegetable oil. Aquaculture 265: 230–243. National Research Council (1993) Nutrient Requirements of Fish. National Research Council, National Academy Press, Washington. Ng WK, Lim PK, Boey PL. (2003) Dietary lipid and palm oil source affects growth, fatty acid composition and muscle a-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture 215: 229–243. Ng WK, Lim PK, Sidek H. (2001) The influence of a dietary lipid source on growth, muscle fatty acid composition and erythrocyte osmotic fragility of hybrid tilapia. Fish Physiology and Biochemistry 25: 301–310. Ng WK, Sigholt T, Bell JG. (2004a) The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finishing diets containing different blends of fish oil, rapeseed oil and palm oil. Aquaculture Research 35: 1228–1237. Ng WK, Soe M, Phone H. (2007b) Aquafeeds in Myanmar: a change from farm-made to factory-made feeds. Aquaculture Asia 12: 7–12. Ng WK, Tocher DR, Bell JG. (2007a) The use of palm oil in aquaculture feeds for salmonid species. European Journal of Lipid Science and Technology 109: 394–399. Ng WK, Wang Y, Ketchimenin P, Yuen KH. (2004b) Replacement of dietary fish oil with palm fatty acid distillate elevates tocopherol and tocotrienol concentrations and increases oxidative stability in the muscle of African catfish, Clarias gariepinus. Aquaculture 233: 423–437. Ng WK. (2007) Replacing marine fish oil in aquafeeds with tropical palm oil products. Aquaculture Asia Magazine 12:38–41. Novakofski J. (2004) Adipogenesis: Usefulness of in vitro and in vivo experimental models. Journal of Animal Science 82: 905–915. Oku H, Koizumi N, Okumura T, Kobayashi T, Umino T. (2006) Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes: effects of fasting and refeeding on their gene expression in red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology 145: 168–178. Oku H, Ogata HY, Liang XF. (2002) Organization of the lipoprotein lipase gene of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 131: 775–785. Oku H, Umino T. (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene ecpression in the differemtiating adipocytes of red sea bream Pagrus major. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 151: 268–277. Okuno M, Kajiwara K, Imai S. (1997) Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. Journal of Nutrition 127: 1752–1757. Olsen RE, Henderson RJ, McAndrew BJ. (1990) The conversion of linoleic acid and linolenic acid to longer chain polyunsaturated fatty acids by Tilapia (Oreochromis) nilotica in vivo. Fish Physiology and Biochemistry 8: 261–270. Olsen RE, Løvaas E, Lie Ø. (1999) The influence of temperature, dietary polyunsaturated fatty acids, alfa-tocopherol and spermine on fatty acid compostion and indices of oxidative stress in juvenile Artic char, Salvelinus alpinus (L.). Fish Physiology and Biochemistry 20: 13–29. Palmer DG, Rutter GA, Tavare JM. (2002) Insulin-stimulated fatty acid synthase gene expression does not require increased sterol response element binding protein 1 transcription in primary adipocytes. Biochemical and Biophysical Research Communications 291: 439–443. Parameswaran V, Ishaq Ahmed VP, Shukla R, Bhonde RR, Sahul Hameed AS. (2007a) Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation. Marine Biotechnology 9: 281–291. Parameswaran V, Shukla R, Bhonde R, Sahul Hameed AS. (2007b) Development of a pluripotent ES-like cell line from Asian sea bass (Lates calcarifer)–an oviparous stem cell line mimicking viviparous ES cells. Marine Biotechnology 9: 766–775. Parrish CC, Pathy DA, Angel A. (1990) Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 39: 217–219. Peters JM, Lee SST, Li W, Ward JM, Gavrilova O, Everett C, Reitman ML, Hudson LD, Gonzalez FJ. (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta (delta). Molecular and Cellular Biology 20: 5119–5128. Poulos SP, Dodson MV, Hausman GJ. (2010) Cell line models for differentiation: preadipocytes and adipocytes. Experimental Biology and Medicine 235: 1185–1193. Poulsen LC, Siersbæk M, Mandrup S. (2012) PPARs: Fatty acid sensors controlling metabolism. Seminar in Cell & developmental Biology 23: 631–639. Pratoomyot J, Bendiksen EA, Bell JG, Tocher DR. (2008) Comparison of effects of vegetable oils blended with southern hemisphere fish oil and decontaminated northern hemisphere fish oil on growth performance, composition and gene expression in Atlantic salmon (Salmo salar L.). Aquaculture 280: 170–178. Price PT, Nelson CM, Clarke S D. (2000) Omega-3 polyunsaturated fatty acid regulation of gene expression. Current Opinion of Lipidology 11: 3–7. Raclot T, Groscolas R, Langin D, Ferre P. (1997) Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. Journal of Lipid Research 38: 1963–1972. Raso S, Anderson TA. (2003) Effects of dietary fish oil replacement on growth and carcass proximate composition of juvenile barramundi (Lates calcarifer). Aquaculture Research 34: 813–819. Rayalam S, Della-Fera MA, Baile CA. (2008) Phytochemicals and regulation of the adipocyte life cycle. The Journal of Nutritional Biochemistry 19: 717–726. Regost C, Arzel J, Robin JH, Rosenlund G, Kaushik SJ. (2003a) Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima). 1. Growth performance, flesh fatty acid profile and lipid metabolism. Aquaculture 217: 465–482. Regost C, Jakobsen JV, Røra˚ AMBF. (2004) Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage. Food Research International 37: 259–271. Richard N, Kaushik S, Larroquet L, Panserat S, Corraze G. (2006b) Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition 96: 299–309. Richard N, Mourente G, Kaushik S, Corraze G. (2006a) Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabas (Dicentrarchus labrax L.). Aquaculture 261: 1077–1087. Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. (1994) Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. The Journal of Biological Chemistry 269: 18767–18772. Rodriguez-Pacheco F, Novelle MG, Vazquez MJ, Garcia-Escobar E, Soriguer F, Rojo-Martinez G, García-Fuentes E, Malagon MM, Dieguez C. (2013) Resistin regulates pituitary lipid metabolism and inflammation in vivo and in vitro. Hindawi Publishing Corporation Mediators of Inflammation 2013: 1–8. Rollin X, Peng J, Pham D, Ackman RG, Larondelle Y. (2003) The effects of dietary lipid and strain difference on polyunsaturated fatty acid composition and conversion in anadromous and landlocked salmon (Salmo salar L.) parr. Comparative Biochemistry and Physiology B 134: 349–366. Røra˚ AMB, Kvale A, Morkore T, Rorvik KA, Steien SH, Thomassen MS. (1998) Process yield, colour and sensory quality of smoked Atlantic salmon (Salmo salar) in relation to raw material characteristics. Food Research International 31: 601–609. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS. (1999) PPAR gamma is required for the differentiation of adiposetissue in vivo and in vitro. Molecular Cell 4: 611–617. Rosen ED, Spiegelman BM. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444: 847–853. Rosenlund G, Obach A, Sandberg MG, Standal H, Tveit K. (2001) Effect of alternative lipid sources on long-term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquaculture Research 32: 323–328. Røsjø C, Nordrum S, Olli JJ, Krogdahl A˚, Ruyter B, Holm H. (2000) Lipid digestibility and metabolism in Atlantic salmo (Salmo salar) fed medium-chain triglycerides. Aquaculture 190: 65–76. Rustan AC, Christiansen EN, Drevon CA. (1992) Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids. Biochemical Journal 283: 333–339. Ruyter B, Moya-Falco´n C, Rosenlund G, Vegusdal A. (2006) Fat content and morphology of liver and intestine of Atlantic salmon (Salmo salar): effects of temperature and dietary soybean oil. Aquaculture 252: 441–452. Sacchettini JC, Gordon JI. (1993) Rat intestinanl fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. The Journal of Biological Chemistry 268: 18399–18402. Saera-Vila A, Calduch-Giner JA, Gomez-Requeni P, Medale F, Kaushik S, Perez-Sanchez J. (2005) Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology 142: 224–232. Saint-Mare P, Kozak LP, Ailhaud G, Darimont C, Négrel R. (2001) Angiotensin II as a trophic factor of white adipose tissue: stimulation of adipose cell formation. Endocrinology 142: 487–492. Salter AM, Tarling EJ. (2007) Regulation of gene transcription by fatty acids. Animal 1: 1314–1320. Sampath H, Ntambi JM. (2004) Polyunsaturated fatty acid regulation of gene expression. Nutrition Reviews 62: 333–339. Sánchez-Gurmaches J, Cruz-Garcia L, Gutiérrez J, Navarro I. (2012) mRNA expression of fatty acid transporters in rainbow trout: in vivo and in vitro regulation by insulin, fasting and inflammation and infection mediators. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 163: 177–188. Sánchez-Gurmaches J, Cruz-Garcia L, Gutiérrez J, Navarro I. (2012) Adiponectin effects and gene expression in rainbow trout: an in vivo and in vitro approach. The Journal of Experimental Biology 215: 1373–1383. Sánchez-Gurmaches J, Østbye TK, Navarro I, Torgersen J, Hevrøy EM, Ruyter B, Torstensen BE. (2011) In vivo and in vitro insulin and fasting control of the transmembrane fatty acid transport proteins in Atlantic salmon (Salmo salar). American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 301: R947–R957. Sargent JR, Tocher DR, Bell JG. (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish Nutrition, Academic Press, Elsevier, San Diego, pp. 181–257. Satoh SW, Poe E, Wilson RP. (1989) Effect of dietary n-3 fatty acids on weight gain and liver polar lipid fatty acid composition of fingerling channel catfish. The Journal of Nutrition 119: 23–28. Schaffer JE, Lodish HF. (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikovk AV, Witkek W, Huttner WB, Söling H. (1999) Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 40: 133–141. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W, Grimaldi P, Staels B, Yamamoto T, Auwerx J. (1995) Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. The Journal of Biological Chemistry 270: 19269–19276. Schroeder F, Jolly C, Cho T, Frolov A. (1998) Fatty acid binding protein isoforms: structure and function. Chemistry and Physics of Lipids 92: 1–25. Schultz C, Knaus U, Wirth M, Rennert B. (2005) Effects of varying dietary fatty acid profile on growth performance, fatty acid, body and tissue composition of juvenile pike perch (Sander lucioperca). Aquaculture Nutrition 11: 403–413. Sener E, Yildiz M, Savas E. (2005) Effects of dietary lipids on growth and fatty acid composition in Russian sturgeon (Acipenser gueldenstaedtii) juveniles. Turkish Journal of Veterinary and Animal Sciences 29: 1101–1107. Shapawi R, Mustafa S, Ng WK. (2008) Effects of dietary fish oil replacement with vegetable oils on growth and tissue fatty acid composition of humpback grouper, Cromileptes altivelis (Valenciennes). Aquaculture Research 39: 315–323. Sigurgisladottir S, Lall SP, Parrish CC, Ackman RG. (1992) Cholestane as a digestability marker in the absorbtion of polyunsaturated fatty acid ethyl esters in Atlantic salmon. Lipids 27: 418–424. Smith KL, Guentzel JL. (2010) Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Marine Pollution Bulletin 60: 1615–1618. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. The Journal of Biological Chemistry 276: 34167–34174. Springer-Verlag, Berlin. Bell JG, Raynard RS (1990) Effects of a high linoleic acid diet on the fatty acid composition of leucocytes from Atlantic salmon (Salmo salar). Transactions of the Biochemical Society 18: 911–912. Stahl A, Evans JG, Pattel S, Hirsch D, Lodish HF. (2002) Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Developmental Cell 2: 477–488. Stahl A. (2004) A current review of fatty acid transport proteins. Pflügers Archiv - European Journal of Physiology 447: 722–727. Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA. (1999) Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochemical and Biophysical Research Communications 257: 615–621. Stewart JM, Driedzic WR, Berkelaar JA. (1991) Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system. Biochemical Journal 275: 569–573. Stickney RR, Andrews JW (1971) Combined effects of dietary lipids and environmental temperature on growth, metabolism and body |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |