姓名 郭家良(Jia-Liang Guo) 電子郵件信箱 E-mail 資料不公開 畢業系所 資訊管理學系研究所(Information Management) 畢業學位 碩士(Master) 畢業時期 105學年第2學期 論文名稱(中) 基於樹規則整合與隱半馬可夫模型的流程發現 論文名稱(英) Process Discovery using Rule-Integrated Trees Hidden Semi-Markov Models 檔案 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
etd-0614117-091652.pdf
請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。論文使用權限 紙本論文:2 年後公開 (2019-07-14 公開)
電子論文:使用者自訂權限:校內 2 年後、校外 2 年後公開
論文語文/頁數 英文/53 統計 本論文已被瀏覽 5660 次,被下載 87 次 摘要(中) 預測或解釋?隨著各種資訊系統產生的資訊量的大幅增長,資料科學近年
來變得越來越流行和重要,而機器學習演算法為許多應用提供了非常強大的支持
和基礎。許多令人印象深刻和驚人的應用都是基於黑箱型的模型。例如,詐欺檢
測系統可以預測哪筆交易資料是詐欺,但是我們無法理解系統如何認為這個人是
詐欺。而雖然白箱型的模型易於理解,但預測的表現相對較差。因此,在本文中,
我們提出了一種新的嫁接樹演算法來整合隨機森林中的決策樹群。此模型試圖在
決策樹和隨機森林之間找到平衡。也就是說,它將具有可解釋性和比決策樹更好
的預測性能。
在我們從隨機森林中嫁接與整合出一棵決策樹後,它將被應用於建立隱半
馬可夫模型,以用於發現系統的潛在變化。我們嘗試透過改進決策樹來提高隱半
馬可夫模型的性能。實驗結果表明,我們提出的規則整合樹模型比一個簡單的決
策樹更好,它可以找到更多的系統狀態,用以回答關於“給定一個可觀測狀態序
列,動態系統的最可能的變化順序是什麼”的問題。摘要(英) To predict or to explain? With the dramatical growth of the volume of
information generated from various information systems, data science has become
popular and important in recent years while machine learning algorithms provide a very
strong support and foundation for various data applications. Many data applications are
based on black-box models. For example, a fraud detection system can predict which
person will default but we cannot understand how the system consider it’s fraud. While
white-box models are easy to understand but have relatively poor predictive
performance. Hence, in this thesis, we propose a novel grafted tree algorithm to
integrate trees of random forests. The model attempt to find a balance between a
decision tree and a random forest. That is, the grafted tree have better interpretability
and the performance than a single decision tree.
With the decision tree is integrated from a random forest, it will be applied to
Hidden semi-Markov models (HSMM) to build a Classification Tree Hidden Semi-
Markov Model (CTHSMM) in order to discover underlying changes of a system. The experimental result shows that our proposed model RITHSMM is better than a simple
decision tree based on Classification and Regression Trees and it can find more
states/leaves so as to answer a kind of questions, “given a sequence of observable
sequence, what are the most probable/relevant sequence of changes of a dynamic
system?”.關鍵字(中) 流程發現 隱半馬可夫模型 隨機森林 嫁接樹 關鍵字(英) Process discovery Classification Tree Hidden Semi-Markov Model HSMM Rule-Integrated trees Random forest 論文目次 論文審定書........................................................................................................................ i
Acknowledgement.............................................................................................................ii
中文摘要..........................................................................................................................iii
Abstract.............................................................................................................................iv
Table of Content................................................................................................................ v
1. Introduction................................................................................................................... 1
2. Background review and related works.......................................................................... 5
2.1 Classification and Regression Trees (CART)......................................................5
2.2 Random Forest.....................................................................................................8
2.3 Tree grafting...................................................................................................... 10
2.4 Classification Tree Hidden Semi-Markov Model (CTHSMM).........................14
3. Proposed approach.......................................................................................................19
3.1 A Rule-Integrated Tree grafted from Random Forest (RI-Tree)........................19
3.2 A RI-Tree with aggregated cut points (RIA-Tree).............................................25
3.3 RI-Tree Hidden Semi-Markov Model (RITHSMM)......................................... 27
4. Experiments and Discussion........................................................................................29
4.1 Ionosphere......................................................................................................... 30
4.2 Pen-based Recognition of Handwritten digits dataset.......................................31
4.3 Optical Recognition of Handwritten digits dataset............................................32
4.4 Waveform...........................................................................................................33
4.5 Sonar..................................................................................................................34
4.6 The experiment of RITHSMM.......................................................................... 36
4.7 Discussion..........................................................................................................41
5. Conclusion................................................................................................................... 44
6. References................................................................................................................... 45參考文獻 Bahl, L., Brown, P., Souza, P. de, & Mercer, R. (1986). Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In ICASSP
’86. IEEE International Conference on Acoustics, Speech, and Signal Processing
(Vol. 11, pp. 49–52). https://doi.org/10.1109/ICASSP.1986.1169179
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and
regression trees. CRC press.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM.
https://doi.org/10.1145/2939672.2939785
Cook, J. E., & Wolf, A. L. (1995). Automating process discovery through event-data
analysis. In Software Engineering, 1995. ICSE 1995. 17th International Conference
on (pp. 73–73). IEEE. Retrieved from
http://ieeexplore.ieee.org/abstract/document/5071093/
Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine Learning, 20(3),
273–297.
Deng, H. (2014). Interpreting tree ensembles with intrees. arXiv Preprint
arXiv:1408.5456.
Dumas, M., Van der Aalst, W. M., & Ter Hofstede, A. H. (2005). Process-aware
information systems: bridging people and software through process technology.
John Wiley & Sons.
Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.
ForsythD, P., & others. (2002). ComputerVision: AModernApproachPrenticeHall.
UpperSaddle River: PrenticeHall.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic
regression (Vol. 398). John Wiley & Sons.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 103). Springer Science & Business Media.
Kang, Y., & Zadorozhny, V. (2016). Process monitoring using maximum sequence
divergence. Knowledge and Information Systems, 48(1), 81–109.
https://doi.org/10.1007/s10115-015-0858-z
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.
Lee, J.-M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods,
and benefits. HortScience, 29(4), 235–239.
Lichman, M. (2013). UCI Machine Learning Repository. University of California,
Irvine, School of Information and Computer Sciences. Retrieved from
http://archive.ics.uci.edu/ml
Phung, L. T. K., Chau, V. T. N., & Phung, N. H. (2015). Extracting Rule RF in
Educational Data Classification: From a Random Forest to Interpretable Refined
Rules. In Advanced Computing and Applications (ACOMP), 2015 International
Conference on (pp. 20–27). IEEE.
Process mining: a research agenda. (n.d.). Retrieved May 21, 2017, from
http://www.sciencedirect.com/science/article/pii/S0166361503001945
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257–286.
https://doi.org/10.1109/5.18626
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier
methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–
674.
Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26).
CRC press.
Tu, Z. (2005). Probabilistic boosting-tree: learning discriminative models for
classification, recognition, and clustering. In Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1 (Vol. 2, p. 1589–1596 Vol. 2).
https://doi.org/10.1109/ICCV.2005.194
van de Aalst, W. (2010). Process discovery: capturing the invisible. IEEE
Computational Intelligence Magazine, 5(1), 28–41.
Van der Aalst, W. M., & Weijters, A. (2004). Process mining: a research agenda.
Computers in Industry, 53(3), 231–244.
Webb, G. I. (1996). Further experimental evidence against the utility of Occam’s razor.
Journal of Artificial Intelligence Research, 4, 397–417.
Webb, G. I. (1997). Decision tree grafting. In IJCAI (2) (pp. 846–851).
Webb, G. I. (1999). Decision tree grafting from the all-tests-but-one partition. In IJCAI
(Vol. 2, pp. 702–707).
Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2), 215–243.
https://doi.org/10.1016/j.artint.2009.11.011口試委員 林耕霈 - 召集委員
李珮如 - 委員
康藝晃 - 指導教授
口試日期 2017-07-13 繳交日期 2017-07-14