論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
含有自我注入鎖定振盪器之有源標籤用於室內定位生理訊號 Localization of Vital Signs in Indoor Surroundings Using an Active Tag with a Self-Injection-Locked Oscillator |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
69 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2013-07-04 |
繳交日期 Date of Submission |
2013-07-15 |
關鍵字 Keywords |
自我注入鎖定振盪器、生理徵象偵測、有源標籤、反正切解調、注入鎖定正交接收機、無線室內定位 Self-injection-locked (SIL) oscillator, active tag, injection-locked (IL) I/Q receiver, wireless indoor positioning, arctangent demodulation, vital sign detection |
||
統計 Statistics |
本論文已被瀏覽 5858 次,被下載 424 次 The thesis/dissertation has been browsed 5858 times, has been downloaded 424 times. |
中文摘要 |
本論文結合自我注入鎖定技術與訊號接收時間差的測距方法實現一適用2.4 GHz之ISM頻段同時於室內進行定位及偵測生理訊號的無線感測系統。系統架構主要包含一有源感測標籤及數個接收單元。感測標籤電路含有自我注入鎖定振盪器,輻射出的頻率調制訊號用於偵測受測者之生理徵象及所在位置,並可以太陽能電池電路作其供電來源。接收單元中含有正交頻率解調器,用於提取調制訊號所攜帶的呼吸、心跳及位置訊息,並在正交解調器的設計中導入注入鎖定振盪器,提供用以執行非同步解調的時間延遲效應,因而本論文的接收單元無須時間同步機制,搭配反正切解調處理,即使各正交解調器中的元件有些微時間不平衡,解調出的基頻訊號也不致失真。在本論文設計的感測實驗中,室內六十四平方公尺的範圍最小估計位置誤差可達10公分,並且利用分頻多重存取的方式,可同時偵測到兩名受測者的生理徵象及位置資訊;此外,受測者在感測過程中的身體晃動影響,可透過頻譜乘積之自相關性運算加以降低,使感測結果保持正確而可判讀。 |
Abstract |
This thesis aims to develop a wireless sensing system for use at 2.4 GHz ISM band in detection of the vital signs and indoor locations of the target subjects. The sensor, an active tag with a self-injection-locked (SIL) oscillator, transmits the carrier signal that is frequency-modulated (FM) by the Doppler signal of the cardiopulmonary activity and the tuning voltage signal of the SIL oscillator; the injection-locked (IL) I/Q receivers perform arctangent demodulation of the FM signal to obtain the subjects’ vital signs and position information. The SIL technology ensures high sensitivity of vital sign detection while the IL I/Q receivers locate the targets without using reference signals. The designed system achieves a minimum of 10 cm location error within an 8-by-8 meter square area in an indoor environment. In the experiment, the frequency division multiple access technology is employed to detect different subjects. Moreover, fidgeting effect on the detection of vital signs has been greatly reduced by a spectral product approach. |
目次 Table of Contents |
論文審定書 ..................................................................................................................... i 誌謝 ............................................................................................................................... ii 中文摘要 ........................................................................................................................ iii 英文摘要 ........................................................................................................................ iv 目錄 ............................................................................................................................... v 圖次 ............................................................................................................................... vii 表次 ............................................................................................................................... ix 第一章 緒論 .................................................................................................................... 1 1.1 研究背景與動機 ......................................................................................................... 1 1.2 文獻探討 ................................................................................................................... 3 1.2.1 無線室內定位方法 ................................................................................................... 3 1.2.2 生理訊號偵測雷達 ................................................................................................... 7 1.3 論文章節組織 ............................................................................................................ 12 第二章 室內定位生理訊號系統設計原理 ............................................................................. 14 2.1 應用於生理徵象感測之自我注入鎖定理論 ..................................................................... 14 2.2 定位系統的設計考量 .................................................................................................. 22 2.3 感測與定位結果之理論預測 ........................................................................................ 27 第三章 室內定位生理訊號混成電路實驗 ............................................................................ 29 3.1 含有自我注入鎖定振盪器之有源標籤設計 .................................................................... 29 3.1.1 標籤元件設計 ........................................................................................................ 29 3.1.2 標籤之量測結果與太陽能電源電路 ........................................................................... 36 3.2 注入鎖定式正交接收機設計 ....................................................................................... 40 3.2.1 含有注入鎖定振盪器之正交解調單元 ....................................................................... 40 3.2.2 基頻訊號的反正切解調處理 .................................................................................... 42 3.3 室內定位生理訊號實驗 ............................................................................................. 43 3.3.1 生理徵象感測結果 ................................................................................................. 44 3.3.2 無線室內定位量測結果 .......................................................................................... 47 第四章 結論 .................................................................................................................. 51 參考文獻 ...................................................................................................................... 53 |
參考文獻 References |
[1] 林坤政,利用無線感測網路模組進行室內定位之研究,國立成功大學電機工程學系碩士論文,民國九十六年。 [2] M. Vossiek et al., “Wireless local positioning,” IEEE Microwave Mag., vol. 4, no. 4, pp. 77-86, Dec. 2003. [3] C. Wagner, A. Stelzer, and H. Jager, “PLL architecture for 77-GHz FMCW radar systems with highly-linear ultra-wideband frequency sweeps,” in IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, Jun. 2006, pp. 399-402. [4] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-Ghz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1542-1553, Aug. 2010. [5] M. Vossiek and P. Gulden, “The switched injection-locked oscillator: a novel versatile concept for wireless transponder and localization systems,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 859-866, Apr. 2008. [6] 李睿軒,結合相位陣列與雷達技術之單節點二維與三維無線室內定位系統,國立中正大學電機工程學系碩士論文,民國一百年。 [7] S. Gezici et al., “Localization via ultra-wideband radios: a look at positioning aspects of future sensor networks,” IEEE Signal Processing Mag., vol. 22, no. 4, pp. 70-84, Jul. 2005. [8] A.-G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992. [9] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave Conf., Dec. 2010, pp. 283-290. [10] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [11] F.-K. Wang et al., “Combining SIL tag and IL receiver for concurrent vital sign and position sensing,” in IEEE MTT-S Int. Microwave Symp. Dig., Seattle, WA, Jun. 2013, pp. TU2B-2: 1-4. [12] J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE Computer, vol. 34, no. 8, pp. 57-66, Aug. 2001. [13] J. Hightower and G. Borriello, “A survey and taxonomy of location sensing systems for ubiquitous computing,” Tech. Rep. UW-CSE 01-08-03 , Aug., 2001. [14] 許巽堯,無線感測網路室內自動化定位系統研究,國立臺灣師範大學機電科技學系碩士論文,民國九十七年。 [15] 葉宜璟,改良型 TDOA/AOA 定位法於室內超寬頻系統之研究,國立中山大學電機工程學系碩士論文,民國九十四年。 [16] 劉澄昇,RFID在即時定位系統之創新應用,工業技術研究院辨識與安全科技中心,民國九十七年。 [17] P. Bahl and V.-N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,” in Proc. 19th Annual Joint Conf. of IEEE Computer and Communications Socirties, Tel Aviv, Israel, Mar. 2000, vol. 2, pp. 775-784 [18] 陳嘉懿、葉明貴、林澤勝,智慧化居住空間之位置察覺─室內空間定位服務技術簡介,智慧化居住空間專屬網站。取自http://www.ils.org.tw [19] O.-B. Lubecke, Y. Nikawa, W. Snyder, J. Lin and K. Mizuno, “Novel microwave and millimeter-wave biomedical applications,” in Proc. 4th Int. Conf. of IEEE Telecommunications in Modern Satellite, Cable and Broadcasting Services, Nis, Serbia, Oct. 1999, vol. 1, pp. 186-193. [20] J. Geisheimer, “RVSM (radar vital signs monitor),” IEEE Potentials, vol. 17, no. 5, pp. 21-24, Dec. 1998. [21] O.-B. Lubecke, P.-W. Ong and V.-M. Lubecke, “10 GHz Doppler radar sensing of respiration and heart movement,” in Proc. IEEE 28th Annu. Northeast Bioengineering Conf., Apr. 2002, pp. 55-56. [22] C. Li, J. Cummings, J. Lam, E. Graves and W. Wu, “Radar remote monitoring of vital signs,” IEEE Microwave Mag., vol. 10, no. 1, pp. 47-56, Feb. 2009. [23] M.-C. Budge Jr. and M.-P. Burt, “Range correlation effects on phase and amplitude noise,” in Proc. IEEE Southeastcon, Charlotte, NC, Apr. 1993, pp. 5. [24] M.-C. Budge Jr. and M.-P. Burt, “Range correlation effects in radars,” in IEEE National RADAR Conf., Lynnfield, MA, Apr. 1993, pp. 212-216. [25] A.-D. Droitcour, V.-M. Lubecke, J. Lin, and O.-B. Lubecke, “A Microwave radio for Doppler radar sensing of vital signs,” in IEEE MTT-S Int. Microwave Symp. Dig., Phoenix, AZ, May 2001, pp. 175-178. [26] I. Mostafanezhad, O.-B. Lubecke, V. Lubecke, and D. P. Mandic, “Application of empirical mode decomposition in removing fidgeting interference in Doppler radar life signs monitoring devices,” in Proc. IEEE Engineering in Medicine and Biology Society Annu. Int. Conf., Sep. 2009, pp. 340-343. [27] A.-D. Droitcour, O.-B. Lubecke, V.-M. Lubecke, J. Lin, and G.-T. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring, ” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004. [28] B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, no. 6, pp. 428-435, Jun. 1997. [29] H.-R. Chuang, Y.-F. Chen, and K.-M. Chen, “Automatic clutter-canceler for microwave life-detection systems,” IEEE Trans. Instrum. Mea., vol. 40, no. 4, pp. 747-750, Aug. 1991. [30] T.-Y. Chin, K.-Y. Lin, S.-F. Chang and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar for noncontact vital signal detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, May 2010, pp. 764-767. [31] B.-K. Park, D. Samardzija, V.-M. Lubecke, O.-B. Lubecke and T. Sizer, “DC offset reduction in phase diversity heterodyne Doppler radar system,” in IEEE AP-S Int. Symp. Dig., Honolulu, HI, Jun. 2007, pp. 3884-3887. [32] A. Singh and V.-M. Lubecke, “A heterodyne receiver for harmonic Doppler radar cardio-pulmonary monitoring with body-worn passive RF tags,” in IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, Jun. 2010, pp. 1600-1603. [33] B.-K. Park, O.-B. Lubecke and V.-M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007. [34] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, Jun. 2008, pp. 567-570. [35] Y. Xiao, J. Lin, O.-B. Lubecke and V.-M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023-2032, May 2006. [36] Y. Yan, C. Li, and J. Lin, “Effects of I/Q mismatch on measurement of periodic movement using a Doppler radar sensor,” in IEEE Radio and Wireless Symp. Dig., New Orleans, LA, Jan. 2010, pp. 196-199. [37] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143-3152, Dec. 2008. [38] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign monitoring,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, Jun. 2009, pp. 1325-1328. [39] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li and C.-C. Chen, “Mutual injection-locked SIL sensor array for vital sign detection with random body movement cancellation,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, Jun. 2011, pp. TH2C-4: 1-4. [40] C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng and K.-C. Peng, “A rigorous analysis of a phase-locked oscillator under injection,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1391-1400, May 2010. [41] R. Adler, “A study of locking phenomena in oscillators,” in Proc. IRE, vol. 34, no. 6, pp. 351-357, June 1946. [42] C.-S. Wang, K.-D. Chu, and C.-K. Wang, “A 0.13 μm CMOS 2.5Gb/s FSK demodulator using injection-locked technique,” in IEEE Radio Frequency Ingetrated Symp. Dig., Boston, MA, Jun. 2009, pp. 563-566. [43] 蔡俊儒,利用注入鎖定振盪器之CMOS感測電路,國立中山大學電機工程學系碩士論文,民國一百年。 [44] C.-T. Chen, C.-H. Hsiao, T.-S. Horng, K.-C. Peng and C.-J. Li, “Cognitive polar receiver using two injection-locked oscillator stages,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3484-3493, Dec. 2011. [45] B.-K. Park , A. Vergara , O.-B. Lubecke , V.-M. Lubecke and A. Høst-Madsen, “Quadrature demodulation with DC cancellation for a doppler radar motion detector,” unpublished. Available: http://www.ee.eng. hawaii.edu/~madsen/Anders_Host-Madsen/Publications_2.html [46] C.-A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken: John Wiley & Sons, New Jersey, 2005. [47] 郭姵均,毫米波CMOS射頻晶片嵌入式天線之研製與量測方法的探討,國立成功大學電機工程學系碩士論文,民國九十八年。 [48] J.-P. Abelairas and F.-M. Martin, “Techniques to reduce the mutual coupling and to improve the isolation between antennas in a diversity system,” M.S. Thesis, Dept. Elect. Syst., Aalborg Univ., Aalborg, Denmark, 2010. [49] C.-A. Balanis, Modern Antenna Handbook, 1st ed. Hoboken: John Willey & Sons, New Jersey, 2008. [50] K.-L. Wong, Planar Antennas for Wireless Communication, 1st ed. Hoboken: John Wiley & Sons, New Jersey, 2003. [51] 林琦璋,應用於WLAN以及超寬頻UWB通訊系統之平面印刷式天線的設計研究,國立成功大學電機工程學系博士論文,民國九十六年。 [52] Y.-L. Kuo and K.-L. Wong, “Coplanar waveguide-fed folded inverted-F antenna for UMTS application,” IEEE Microw. Optical Technol. Lett., vol. 32, pp. 364-366, Mar. 5, 2002. [53] C. Soras, M. Karaboikis, G. Tsachtsiris and V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM band,” IEEE Antennas Propagat. Mag., vol. 44, no. 1, pp. 37-44, Feb. 2002. [54] G.-P. Karakoussis, A.-I. Kostaridis, C.-G. Biniaris, and D.-I. Kaklamani, “A dual-band inverted-F antenna printed on a PC card for the ISM and UNNI bands,” in Proc. IEEE Wireless Communications and Networking Conf., New Orleans, LA, Mar. 2003, vol. 1 pp. 88-92. [55] H.-R. Chuang and L.-C. Kuo, "3-D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole-antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications," IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 374-381, Feb. 2003. [56] T. Kellomaki, "Effects of the human body on single-layer wearable antennas," Ph.D. dissertation, Dept. Sci. Tech., Tampere Univ. Tech., Tampere, Finland, 2012. [57] Y. Qi, H. Kobayashi and H. Suda, “Analysis of wireless geolocation in a non-line-of-sight environment,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 672-681, Mar. 2006. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |