論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
散裝航運燃油成本與替代燃料分析 Analysis of Bunker Fuel Costs and Alternative Fuels in Bulk Shipping |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
73 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-06-07 |
繳交日期 Date of Submission |
2024-07-15 |
關鍵字 Keywords |
散裝航運、燃油成本、脫硫設備、替代燃料、Net Zero Bulk Shipping, Fuel Cost, Scrubber, Alternative Fuels, Net Zero |
||
統計 Statistics |
本論文已被瀏覽 99 次,被下載 2 次 The thesis/dissertation has been browsed 99 times, has been downloaded 2 times. |
中文摘要 |
根據聯合國貿易和發展會議(UNCTAD)的「2023年海運回顧」資料顯示,目前仍有高達98.8%的船舶依賴石化燃料。國際海事組織(IMO)於2020年1月1日起實施全球船舶含硫量限制,船舶燃油硫含量必須從3.5%以下,減至0.5%以下。因應IMO規定,行駛於國際航線的船舶必須使用硫含量0.5%以下的低硫燃油(LSFO),或者安裝脫硫設備(Scrubber)或改用其他替代燃料來減少溫室氣體和汙染物排放。 本研究以2020年1月IMO新法規生效至2023年12月份作為研究基礎,此段期間國際原油價格歷經新冠疫情、供應鏈失衡、俄烏戰爭、通貨膨脹等總體因素影響波動劇烈,連帶影響航運燃油價格,本研究分析高低硫燃油具有價差情況下,投資脫硫設備是否具備經濟效益。研究結果顯示2020年至2023年期間,高低硫燃油價格平均價差約為164美元/噸,投資回收期約2.5年,然而,考量高低硫燃油的價差未必可持續維持以及未來法規仍有變動的可能性,脫硫設備仍被視為燃料轉型的過渡設備。 IMO與歐盟對於2050年淨零排放的目標,在實際策略上逐漸明確,歐盟在2024年開始將航運產業納入碳交易體系(EU ETS),進出歐盟港口船隻必須申報航行過程中所產生的碳排放量與繳納碳排放配額(EUA);IMO也要求國際航線船舶在2030年必須使用一定比例的低碳或零碳燃料,燃料轉型已成為航運業趨勢之一,本研究亦針對目前具有發展潛力的替代燃料進行整理分析。 |
Abstract |
According to THE UNCTAD'S review of maritime transport 2023, currently 98.8% of ships still rely on fossil fuels. The international maritime organization (IMO) implemented a global sulfur cap on January 1, 2020, reducing the permissible sulfur content in ship fuel from 3.5% to 0.5%. To comply with IMO regulations, ships on international routes must use low sulfur fuel oil (LSFO) with a sulfur content of 0.5% or lower, install scrubbers, or switch to alternative fuels to reduce greenhouse gas and pollutant emissions. This study investigates the period from January 2020 to December 2023, throughout this period, international crude oil prices experienced significant volatility due to macroeconomic factors such as the covid-19 pandemic, supply chain disruptions, the Russia Ukraine conflict, and inflation. These fluctuations had a direct impact on marine fuel prices. This research analyzes the differences in marine fuel costs on identical shipping routes between vessels equipped with scrubbers using HSFO and LSFO. Additionally, the economic viability of investing in scrubbers is evaluated. The results indicate that from 2020 to 2023, the average price difference between HSFO and LSFO was approximately USD 164/mt, with a payback period of about 2.5 years. Considering the uncertainty of the price differential between high-sulfur and low-sulfur fuel oils, along with the potential for future regulatory changes by the IMO and EU, scrubbers are considered as one of the transitional solutions for the shipping industry's fuel transformation. The International Maritime Organization (IMO) and the European Union (EU) are progressively clarifying their strategies for achieving the goal of net-zero carbon emissions by 2050. Starting in 2024, the EU include the shipping industry in its carbon trading system, requiring ships entering and leaving from EU ports to report their carbon emissions and purchase emission allowances (EUA). The IMO also mandates that by 2030, international shipping must use a certain proportion of low- or zero-carbon fuels. Fuel transition has become a key trend in the shipping industry. This study analyzes the potential of various alternative fuels, their advantages, challenges, and future cost estimates. |
目次 Table of Contents |
論文審定書 i 摘要 ii ABSTRACT iii 目錄 v 圖次 vii 表次 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 3 第二章 文獻探討 5 2.1 傳統船用石化燃料 5 2.2 替代燃料介紹與比較 5 2.3 替代燃料成本比較 11 2.4脫硫設備 16 第三章 研究方法 20 3.1 研究問題說明 20 3.2 研究資料 22 3.3 變數與參數說明 24 3.4 研究方法 25 3.5 研究流程圖 26 3.6 淨現值法 27 第四章 研究分析與討論 29 4.1 投資脫硫設備成本分析 29 4.2 投資LNG燃料改裝成本分析 33 第五章 結論與建議 35 5.1 結論 35 5.2 經營者洞察 36 參考文獻 39 |
參考文獻 References |
1. 鄭惠方. (2016). LNG燃料船用於台灣近海航運之環境效益分析 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/vy5r4f 2. Andersson, K., Jeong, B., & Jang, H. (2020). Life cycle and cost assessment of a marine scrubber installation. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 4(4), 162-176. 3. Atilhan, S., Park, S., El-Halwagi, M. M., Atilhan, M., Moore, M., & Nielsen, R. B. (2021). Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 31, 100668. 4. Dijkstra, C., & Simon, V. (2023). Shipping Campaigner-LNG & Biofuels. 5. Elgohary, M. M., Seddiek, I. S., & Salem, A. M. (2015). Overview of alternative fuels with emphasis on the potential of liquefied natural gas as future marine fuel. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 229(4), 365-375. 6. Fagerlund, P., & Ramne, B. (2013). Effship Project: summary and conclusions. Proceedings of the EffShip Seminar, Göteborg, Sweden, 7. Foretich, A., Zaimes, G. G., Hawkins, T. R., & Newes, E. (2021). Challenges and opportunities for alternative fuels in the maritime sector. Maritime Transport Research, 2, 100033. 8. Gore, K., Rigot-Müller, P., & Coughlan, J. (2022). Cost assessment of alternative fuels for maritime transportation in Ireland. Transportation Research Part D: Transport and Environment, 110, 103416. 9. Gozillon, D. (2022). FuelEU Maritime: T&E Analysis and Recommendations: How to Drive the Uptake of Sustainable Fuels in Shipping. Transport & Environment. 10. Green ammonia synthesis. (2023). Nature Synthesis, 2(7), 581-582. https://doi.org/10.1038/s44160-023-00362-y 11. Hansson, J., Fridell, E., & Brynolf, S. (2020). On the potential of ammonia as fuel for shipping. In: Lighthouse. 12. Lau, H. C., Ramakrishna, S., Zhang, K., & Hameed, M. Z. S. (2021). A decarbonization roadmap for Singapore and its energy policy implications. Energies, 14(20), 6455. 13. Le Fevre, C. (2018). A review of demand prospects for LNG as a marine fuel. 14. Liu, M., Li, C., Koh, E. K., Ang, Z., & Lam, J. S. L. (2019). Is methanol a future marine fuel for shipping? Journal of Physics: Conference Series, 15. Lunde Hermansson, A., Hassellöv, I.-M., Grönholm, T., Jalkanen, J.-P., Fridell, E., Parsmo, R., Hassellöv, J., & Ytreberg, E. (2024). Strong economic incentives of ship scrubbers promoting pollution. Nature Sustainability, 1-11. 16. Machaj, K., Kupecki, J., Malecha, Z., Morawski, A., Skrzypkiewicz, M., Stanclik, M., & Chorowski, M. (2022). Ammonia as a potential marine fuel: A review. Energy Strategy Reviews, 44, 100926. 17. Mallouppas, G., Ioannou, C., & Yfantis, E. A. (2022). A review of the latest trends in the use of green ammonia as an energy carrier in maritime industry. Energies, 15(4), 1453. 18. Melideo, D., & Desideri, U. (2024). The use of hydrogen as alternative fuel for ship propulsion: A case study of full and partial retrofitting of roll-on/roll-off vessels for short distance routes. International Journal of Hydrogen Energy, 50, 1045-1055. 19. Panasiuk, I., & Turkina, L. (2015). The evaluation of investments efficiency of SOx scrubber installation. Transportation Research Part D: Transport and Environment, 40, 87-96. 20. Pavlenko, N., Comer, B., Zhou, Y., Clark, N., & Rutherford, D. (2020). The climate implications of using LNG as a marine fuel. Swedish Environmental Protection Agency: Stockholm, Sweden. 21. Raucci, C., McKinlay, C., & Karan, A. (2023). The future of maritime fuels. https://doi.org/10.13140/RG.2.2.13612.44168 22. Sagin, S., Karianskyi, S., Madey, V., Sagin, A., Stoliaryk, T., & Tkachenko, I. (2023). Impact of biofuel on the environmental and economic performance of marine diesel engines. Journal of Marine Science and Engineering, 11(1), 120. 23. Tan, E. C., Hawkins, T. R., Lee, U., Tao, L., Meyer, P. A., Wang, M., & Thompson, T. (2021). Biofuel options for marine applications: technoeconomic and life-cycle analyses. Environmental science & technology, 55(11), 7561-7570. 24. Tao, L., Fairley, D., Kleeman, M. J., & Harley, R. A. (2013). Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area. Environmental science & technology, 47(18), 10171-10178. 25. Van Hoecke, L., Laffineur, L., Campe, R., Perreault, P., Verbruggen, S. W., & Lenaerts, S. (2021). Challenges in the use of hydrogen for maritime applications. Energy & Environmental Science, 14(2), 815-843. 26. Van, T. C., Ramirez, J., Rainey, T., Ristovski, Z., & Brown, R. J. (2019). Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transportation Research Part D: Transport and Environment, 70, 123-134. 27. Vedachalam, S., Baquerizo, N., & Dalai, A. K. (2022). Review on impacts of low sulfur regulations on marine fuels and compliance options. Fuel, 310, 122243. 28. Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651. 29. Hempel A/S The Scrubber Dilemma And The Impact Of Selecting The Optimum Hull Coating Retrieved July12, 2024, from https://www.hempel.com/en-me/middle-east/markets/marine/technical-articles/the-scrubber-dilemma-and-the-impact-of-selecting-the-optimum-hull-coating 30. Transport & Environment (2023). Modelling The Impact Of FuelEU Maritime On EU Shipping. Retrieved July12, 2024, from https://www.transportenvironment.org/articles/the-impact-of-fueleu-maritime 31. North Standard(2024). No Scrubs: Countries And Ports Where Restrictions On EGCS Discharges Apply Retrieved July12, 2024, from https://north-standard.com/insights/news/no-scrubs-countries-and-ports-where-restrictions-on-egcs-discharges-apply/ 32. IRENA AND METHANOL INSTITUTE (2021), Innovation Outlook : Renewable Methanol, International Renewable Energy Agency, Abu Dhabi. Retrieved July12, 2024, from https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol 33. Future Fuels. (n.d.). DNV. Retrieved July12, 2024, from https://www.dnv.com/maritime/hub/decarbonize-shipping/fuels/future-fuels.html 34. International Energy Agency. (2022). World Energy Outlook, 2022 Retrieved July12, 2024, from https://www.iea.org/reports/world-energy-outlook-2022 35. IRENA, AEA. (2022). Innovation Outlook, Renewable Ammonia. Retrieved July12, 2024, from https://www.irena.org/publications/2022/May/Innovation-Outlook-Renewable-Ammonia 36. Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping. (2023). MMMCZCS LCA Methodology for Calculating the GHG Intensity of Maritime Fuels Retrieved July12, 2024, from https://www.zerocarbonshipping.com/publications/mmmczcs-lca-methodology-for-calculating-the-ghg-intensity-of-maritime-fuels-2/ 37. SEA-LNG. (2022). LNG AS A MARINE FUEL – THE INVESTMENT OPPORTUNITY Retrieved July12, 2024, from https://sea-lng.org/wp-content/uploads/2020/04/SEA-LNGStudyFINAL2.pdf |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |