論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
微型90度耦合線耦合器之研製 Design and Implementation of Miniaturized Wideband 90 Degree Coupled-Line Coupler |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
95 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2016-06-16 |
繳交日期 Date of Submission |
2016-07-16 |
關鍵字 Keywords |
寬頻耦合器、微帶耦合器、巴特沃斯耦合器、耦合線耦合器、微型化耦合器 wideband coupler, coupled-line coupler, miniaturized coupler, Butterworth coupler, microstrip coupler |
||
統計 Statistics |
本論文已被瀏覽 6033 次,被下載 668 次 The thesis/dissertation has been browsed 6033 times, has been downloaded 668 times. |
中文摘要 |
無論在微波系統或毫米波系統中,微帶線耦合器在電路系統的設計過程中都扮演著舉足輕重的角色。在實際應用上該元件具有分配功率及控制訊號相位的功能,使其應用層面非常廣泛,從功率放大器、偵測器、調制器、混頻器、相移器、天線陣列到微波儀器系統都可以看見它的蹤影。為了因應日益蓬勃發展的通訊產業及雷達系統,考量到使用頻段及系統整體面積,因此在耦合路徑的設計上必須更加寬頻及減少整體電路的面積。 本篇論文藉由嚴謹的理論推導及反覆的實驗驗證,實現兼具寬頻及微型化的15及20 dB之90度耦合線耦合器。在實驗上分別在Advanced Design System (ADS) 及High Frequency Simulation Software (HFSS) 建立相同的實驗模組,針對兩組資料進行模擬及實驗論證,並配合不同的微帶線斜切方式探討其實驗結果及各項操縱變因所帶來的影響。在設計架構上,採用3節平行的耦合微帶線設計此耦合器架構,使其頻率範圍2.3-6 GHz時,具有 ± 1 dB以內之耦合係數變化量,大於18 dB的折返損耗與隔離度,以及90°±5°的耦合係數相位範圍。 此實驗也有一系列的貢獻,舉例來說 曲面的形式來形成饋入線 開路株的實線來保持電容的平衡 作為旁帶耦合線與中間部分的交會處。最後利用基板厚度0.8 mm、介電常數4.4介質損耗係數是0.02且金屬厚度0.01 mm的FR4基板完成此一耦合器架構,並將實驗結果與模擬結果進行比對,驗證此實驗之精準性。 |
Abstract |
The coupled-line coupler is one of the most important components in microwave and millimeter-wave systems. Such devices are used for distributing power, tapping signals and for measurements purposes in power amplifiers, detectors, modulators, mixers, phase shifters, antenna arrays and microwave instruments. Due to the increasing development and deployment of communications and radar applications, it is necessary in particular the reduction in size with a wideband coupling. In the present thesis, the design, fabrication and measurement of miniaturized wideband 15 and 20 dB 90-degree coupled-line couplers are exposed. The realization of this component involves the use of different microstrip mitering techniques and computer aided design (CAD) tools such as Advanced Design System (ADS) and High Frequency Simulation Software (HFSS) for modeling, optimization and tuning. Based on this structure, a three-section coupled-line coupler having a frequency range from 2.3 to 6 GHz, a coupling of 15 or 20 ± 1 dB, a return loss and an isolation of more than 18 dB, and a coupling phase of 90º ±5º is presented. There is also a series of contributions for such work which are discussed in detail such as the use of a tapered line to form a feedline, the implementation of open stubs to keep a capacitive balance and also the junctions to connect the lateral coupled lines to the middle section. Finally, the coupler has been realized on a 0.8 mm thick FR4 substrate with a dielectric constant of 4.4, loss tangent of 0.02 and a metal thickness of 0.01 mm. After testing fabricated design, measurement results present a high agreement with the simulations results, thus verifying the design accuracy. |
目次 Table of Contents |
Contents Pages Thesis Validation Letter in Chinese...........................................................................................i Thesis Validation Letter in English...........................................................................................ii Declaration................................................................................................................................iii Acknowledgements..................................................................................................................iv Dedication…………………………………………………………………………………….v Abstract (Chinese)....................................................................................................................vi Abstract (English)....................................................................................................................vii Table of Contents...................................................................................................................viii List of Figures...........................................................................................................................x List of Tables...........................................................................................................................xii List of Symbols.......................................................................................................................xiii CHAPTER 1 Introduction 1. Background…………………………………………………………………………...1 2. Motive............................................................................................................................2 3. Thesis Structure..............................................................................................................3 CHAPTER 2 Transmission lines 1. Introduction..………………………………………………….……………………...4 2. Definition of a Transmission Line.................................................................................4 3. Types of Planar Transmission Lines….........................................................................6 4. Microstrip Line..............................................................................................................8 CHAPTER 3 Coupled Lines and Couplers 3.1 Coupled Microstrip Lines....................................................................................10 3.2 Principle of Operation……………………………………………………….….12 3.3 Multisection Coupled-Line Couplers…………………………………………...18 3.4 Discontinuities of Multisection Couplers…………...…………………………..20 3.4.1 Microstrip Bends……………………………………………...……………..21 3.4.2 Steps in Width…………………………………………………………….....21 3.5 Coupled-Line Coupler Mathematical Design.……………………………………21 3.5.1 Designing of 50Ω Ports for SMA Connectors……………………………....25 3.5.2 Designing of Feedlines……………………………………………………....30 3.5.3 Designing of Junctions……………………………………………………....36 3.5.4 Coupler Parts Assembling...………………………………………………....37 3.5.5 Final Layout and Results of Coupler………………………….………….....39 3.6 Compared Designs………………………………………………………………..44 3.6.1 Compared Design no.1………………..…………………………………......45 3.6.2 Compared Design no.2……………………..……………………………......49 3.7 15 Degrees Coupled Line Coupler……………………………………………..52 CHAPTER 4 Conclusion 4.1 Summary ...............................................................................................................57 5.3 Conclusion and Scope for Future Work.................................................................58 5.3 Contribution of Thesis…………………………………………………………....59 References ...........................................................................................................................60 Appendix A .........................................................................................................................67 Appendix B .........................................................................................................................68 |
參考文獻 References |
[1] C. M. Potter and G. Hjipieris, “Improvement in ultra-broadband TEM coupler design,” IEE Proceedings on Microwaves, Antennas and Propagation, 1992, pp. 171-178. [2] E. G. Cristal and L. Young, “Theory and tables of optimum symmetrical TEM-mode coupled transmission line directional couplers,” IEEE Trans. Microwave Theory and Tech, vol. MTT-13, Sept. 1965, pp. 544-588. [3] R. Levy, “Tables for asymmetric multi-element coupled transmission line directional couplers,” IEEE Trans. Microwave Theory and Tech, vol. MTT-12, May. 1964, pp. 275-279. [4] T. Djerafi and W. Ke, "Super-Compact Substrate Integrated Waveguide Cruciform Directional Coupler," IEEE Microwave and Wireless Components Letters, vol. 17, 2007-01-01, pp. 757-759. [5] Yunbo Zhang, Qingyuan Wang, Congling Wang, and Xueyan Wang, “UWB Asymmetric Multi-Section Directional Coupler With Improved Directivity,” International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 2013, pp. 207-210. [6] R. M. Barrett, “Microwave Printed Circuits. An Historical Perspective,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-32, September 1984, pp. 983–990. [7] D. D. Grieg and H. F. Engelmann, Microstrip a New Transmission Technique for the Kilomegacycle Range, Proceedings of the IRE, vol. 40, December 1952, pp. 1644–1650. [8] David M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc. 2005, pp. 49-156. [9] Ludwig Reinhold and Pavel Bretchko, RF and Circuit Design (Theory and Applications) Prentice-Hall, Inc. 2000, pp. 42-82. [10] K. Wincza and S. Gruszczynski, "Miniaturized Quasi-Lumped Coupled-Line Single-Section and Multisection Directional Couplers," Microwave Theory and Techniques, IEEE Transactions, vol. 58, Issue: 11, Nov. 2010, pp. 2924 - 2931. [11] R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-Line Circuits, 2nd ed. 2007 Artech House Inc., pp. 184-186. [12] Dr. A. K. Rastogi, Munira Bano, and Manisha Nigam, “Microstrip Line Discontinuities Simulation at Microwave Frequencies,” Department of Physics & Electronics, Institute for Excellence in Higher Education, Bhopal, (M.P.), India-462016. [13] Agilent Technologies Inc. 2012, ADS Cookbook, Published in USA, November 8, 2012, [Online], available at: www.agilent.com, 5991-1516 En., pp. 133-150. [14] Tarun Kumar Kanade1 , Alok Kumar Rastogi, and Sunil Mishra “Investigation of Microstrip Dispersions and Bend Discontinuities,” Department of Physics & Electronics Institute for Excellence in Higher Education, Bhopal, pp. 58-66. [15] R. Ludwig and G. Bogdanov, “RF Circuit Design: Theory and Applications,” 2nd ed., Prentice-Hall inc., 2000. pp. 64-69. [16] Daniel George Neuman, “Optimization of Microstrip Patch Antenna Array for Hyperthermic Treatment of Superficial Disease,” Microwave Theory, San Francisco, California December, 2000. [17] Hee-Ran Ahn and Bumman Kim, “Toward Integrated circuit size reduction,” Department of Electronic and Electrical Engineering, POSTECH (Pohang University of Science and Technology), Republic of Korea. IEEE microwave magazyne, February 2008. [18] Norihiko Morinaga, Ryuji Kohno, and Seiichi Sampei, Wireless Communication Technologies: New MultiMedia Systems, Kluwer academic publishers, New York, Boston, Dordrent, London, Moscow, pp. 202-225. [19] Debapratim Ghosh, Microwave Transmission Lines, Department of Electrical Engineering Indian Institute of Technology Bombay. pp.1-23. [20] M. Kirschning, R. H. Jansen, and N. H. L. Koster, "Measurement and Computer-Aided Modeling of Microstrip Discontinuities by an Improved Resonator Method," IEEE MTT-S International Microwave Symposium Digest, May 1983, pp. 495-497. [21] N. Marcuvitz, Waveguide Handbook, McGraw-Hill, New York, 1951, pp. 312-313. [22] K. C. Gupta, Microstrip Lines and Slotlines, 2nd Ed. Artech House Microwave Library 2nd, pp. 159-211. [23] Zaiki Awang, Microwave Systems Design, Faculty of Electrical Engineering University Technology MARA Shah Alam, Malaysia, pp. 121-125. [24] Rana Pratap Yadav, Sunil Kumar, and S. V. Kulkarni, “An Analysis of Junction Discontinuity Effects in the Multi-Element Coupled Lines and its Diminution at Designing Stage,” Institute for Plasma Research, Bhat, Gandhinagar 382428, India. Progress in Electromagnetics Research B, vol. 56, pp. 25-49, 201. [25] Haijiang Ma, Novel RF Slow-Wave Coupled-Line Circuits and Antennas for Compact Wireless Systems, Doctorate dissertation, Graduate College of the University of Illinois at Chicago, 2012. [26] SMA Receptacle Tab Contact Connectors DC to 27 GHz. [ONLINE], available at: http://www.microwavetown.com/SMA-Receptacle-Tab-Contact-Connectors---DC-to-27GHz/#sthash.UdI7JVfX.dpuf. [27] Harri Eskelinen, Kare-Petri Lätti, and Pertti Silventoinen, DFM- Aspects for an SMA Connector Design, Lappeenranta University of Technology, Department of Mechanical Engineering. 2004, research report 53. [28] Doug Leys, Best Materials for 3-6 GHz Design Printed Circuit Design & Manufacture. [Online] November 2004, available at: www.parkelectro.com/parkelectro/images/leysfinal.pdf [29] Rick Hartley, Base Materials for High Speed, High Frequency PC Boards, Published in PCB & A, March 2002. [30] Douglas Brooks, Skin Effect, Ultracad Design, Inc. Printed Circuit Design and Manufacturing, UP Media, in December, 2009. [Online], available at: www.ultracad.com/articles/skin effect.pdf. [31] Tarun Kumar, Kanade1 Alok, Rastogi Kumar, and Sunil Mishra, “Investigation of Microstrip Dispersions and Bend Discontinuities,” International Journal of Electronics and Computer Science Engineering, pp. 58-66. [32] Hemendra Kumar, Ruchira Jadhav, and Sulabha Ranade, A Review on Substrate Integrated Waveguide and its Microstrip Interconnect, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735, vol. 3, Issue 5, Sep.– Oct. 2012, pp. 36-40. [33] M. Moradian and M. Khalaj-Amirhosseini, “Improvement on the Characteristics of the Microstrip Parallel Coupled Line Coupler by Means of Grooved Substrate,” Department of Electrical Engineering Iran University of Science and Technology Narmak, Tehran, 16846-13114, Iran, Progress In Electromagnetics Research M., vol. 3, 205–215, 2008. [34] Annapurna Das and Sisir K Das, Microwave Engineering, McGraw-Hill Education, India 3rd ed. Chapter 6. [35] Suleiman Babani, Jazuli Sunusi Kazaure, Tonga Agadi Danladi, and Abduhrraman Lawan Umar, “Design and Simulation of Coupled-Line Coupler with Different Values of Coupling Efficiency,” Department of Electrical and Electronics Engineering, Hussaini Adamu Federal Polytechnic, P.M.B 5004 Kazaure, Jigawa State Nigeria. [36] Leo G. Maloratsky. RF and Microwave Integrated Circuits, Newnes is an imprint of Elsevier, pp. 13-34. [37] Yongle Wu, Weinong Sun, Sai-Wing Leung, Yinliang Diao, Kwok-Hung Chan, and Yun-Ming Siu, “Single-Layer Microstrip High-Directivity Coupled-Line Coupler with Tight Coupling,” IEEE Transactions on Microwave Theory and Techniques, February 2013, vol. 61, No. 2. [38] R. Keshavarz, M. Movahhedi, and A. Hakimi, “A Novel Broad Bandwidth and Compact Backward Coupler with High Coupling Level,” Electrical Engineering Department Shahid Bahonar University of Kerman 22 Bahman Bolv., Kerman, Iran. J. of Electromagn. Waves and Appl., 2011, vol. 25, pp. 283–293. [39] Shulabh Gupta and Christophe Caloz, “Analog Signal Processing in Transmission Line Metamaterial Structures,” Poly-Grames Research Center, ´ Ecole Polytechnique de Montr´eal, Montr´eal, Qu´ebec, Canada. Radio Engineering, vol. 18, No. 2, June 2009. [40] Seungku Lee and Yongshik Lee, “Generalized Miniaturization Method for Coupled-Line Bandpass Filters by Reactive Loading,” Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. IEEE Transactions on Microwave Theory and Techniques, vol 58, Issue: 9. [41] Amin Rida, Alexandros Margomenos, and Manos M. Tentzeris, “Wideband mm-wave compensated 90° bends for Grounded Coplanar Waveguide and microstrip Transmission Lines on flexible LCP substrates, ” School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30308, USA ; 2009 59th Electronic Components and Technology Conference, 2009, pp. 2000 – 2003. [42] Carlos Sánchez Sierra, Microwave directional couplers, Master thesis. [43] Leo G. Maloratsky, Setting Strategies for Planar Dividers/Combiners, [Online] Aerospace Electronics Co., Indialantic FL February 1, 2010, available at: http://www.microwavejournal.com. [44] A. Tugulea and I. R. Ciric, Equivalent Circuit for a Microstrip Step Discontinuity, [ONLINE], Department of Electrical and Computer Engineering The University of Manitoba Winnipeg, Manitoba, Canada R3T 5V6, available at: home.cc.umanitoba.ca/~irciric/c67.pdf. [45] Anton Kachayev, Liga-Micromachined Tight Microwave Couplers, a master´s thesis of Science in the Department of Electrical Engineering University of Saskatchewan Saskatoon. Copyright Anton Kachayev, 2003. [46] E. Metlevskis and V. Urbanavicius, “Analysis of Charge Distribution on Rectangular Microstrip Structures,” Department of Electronic Systems, Vilnius Gediminas Technical University Naugarduko str. 41-425, Vilnius LT-03227, Lithuania, vol. 119, 2011, pp. 504-508. [47] Henry J. Maramis and K. C. Gupta, “Planar Analisis and Optimization of Microstrip Discontinuities,” Scientific report No, 96, Electromagnetic laboratory, University of Colorado. 1998. [48] S. Maheswari and T. Jayanthy, “Microstrip Coupler with High Isolation,” Sathyabama University, Chennai, India. Principal, Panimalar Insitute of Technology, Chennai, India. International Journal of Electronics and Communication Engineering. ISSN 0974-2166, vol. 7, No. 2, 2014, pp. 105-110. [49] Il-Gu Ji and Jong-Wha Chong, “A New Directional Coupler Design with High Directivity for PCS and IMT-2000,” ETRI Journal, vol. 27, No. 6, December 2005. [50] S. Maheswari and T. Jayanthy, “High Directivity Microstrip Coupler Using Variable Width Structure,” IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735, vol 9, Issue 4, Jul - Aug. 2014, pp. 24-28. [51] Chen-Cheng Wang, Chi-Hui Lai, and Tzyh-Ghuang Ma, “Miniaturized Coupled-Line Couplers Using Uniplanar Synthesized Coplanar Waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, No. 8, August 2010. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |