Responsive image
博碩士論文 etd-0616119-221245 詳細資訊
Title page for etd-0616119-221245
論文名稱
Title
具動態雜波免疫力之穿戴型生命徵象感測雷達天線設計
Design of Wearable Vital Sign Sensing Radar Antenna with Moving Clutter Immunity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-08
繳交日期
Date of Submission
2019-07-16
關鍵字
Keywords
自我注入鎖定雷達、頻率選擇表面、線性極化轉圓極化、雜波抑制、生理監測
clutter suppression, vital sign monitoring, SIL radar, Frequency Selective Surface, linear-to-circular
統計
Statistics
本論文已被瀏覽 5809 次,被下載 0
The thesis/dissertation has been browsed 5809 times, has been downloaded 0 times.
中文摘要
本論文設計一個由全向性的單極天線及頻率選擇表面(Frequency selective surface, FSS)所組成的穿戴式標籤天線,單極天線產生線性極化波輻射至受測者胸腔位置,且透過同一支天線接收由心肺運動所造成帶有都卜勒位移的反射波並作為注入訊號注入振盪器達到自我注入鎖定(Self-injection-locked, SIL)狀態,並輸出頻率調制訊號。單極天線的輸出訊號亦會輻射至該頻率選擇表面,並將線性極化波轉為左手圓極化波發射至不同位置的接收機進行頻率解調以得到受測者的生命徵象。來自於環境中的反射訊號,將因為頻率選擇表面具有極化分極的效果而被拒絕,可提高受測者生命徵象感測的準確率。
本論文的雛形電路操作在2.4 GHz,天線規格如下述,折返損耗為10 dB,頻寬(2.3~2.57 GHz)內之軸比小於3 dB,標籤由所設計之天線與自我注入鎖定振盪器組成。接收機的輸入功率需大於-30 dBm,頻寬為2.3到2.6 GHz,含有一個左手圓極化天線、主動式正交頻率解調器、低雜訊放大器。穿戴情況為將標籤天線附著於受測者胸腔上,並將接收天線置於標籤天線前方三十公分處做接收。
實驗的部分首先利用致動器來確認標籤天線對環境中動態雜波的抑制效果,動態雜波可能出現的情況有以下幾種,受測者手持接收天線晃動時,以及在量測過程中,他人分別從受測者之後方、側方以及接收天線後方等三個方向來回走動。針對上述情況進行有無頻率選擇表面對生命徵象量測之比較,顯示出本架構對移動雜波有良好的抑制效果。
Abstract
This thesis is proposed to design an omnidirectional monopole antenna with frequency selective service (FSS) for the vital sign monitoring. Originally, the antenna radiates a linearly polarized wave towards the subject’s chest. The wave then reflected back to the antenna including the doppler shift caused by the cardiopulmonary motion as the injection signal to enable the self-injection-locked (SIL) state. After that, the modulated signal is transmitted to the frequency demodulator.
The modulated signal is radiated as through the FSS layer, this makes the signal is converted from linear polarized wave to become left-hand circular polarized (L.H.C.P) wave. This converted signal is then transmitted to the receiver. Notably, since the transmitted wave is L.H.C.P, due to the boundary conditions, the reflected signal of the L.H.C.P wave is the right-hand circular polarized (R.H.C.P) wave, thus this reflected signal cannot be received back by the SILO tag antenna due to the polarization diversity. This condition improves the accuracy of the subject’s vital sign sensing.
The proposed SIL radar system in this thesis is operated at the frequency of 2.4 GHz. The return loss is 10 dB, and the axial ratio within this bandwidth(2.3~2.57 GHz) is less than 3 dB. The SILO tag consists of the antenna and a SIL oscillator. In the receiver side, it uses a L.H.C.P antenna, an active quadrature demodulation and low noise amplifier. The SILO tag is attached on the subject’s chest and the receiver is placed at the distance of 30 cm away from the SILO tag.
This experiment is divided into several parts. First, this thesis aims to measure the moving clutter rejection of the SILO tag by using the FSS. the moving clutter is mainly caused by the hand shaking or the subject’s body motion. To analyze that condition, this thesis will compare the system with and without the FSS.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第一章 緒論 1
1.1研究背景與動機 1
1.2雷達監測生理訊號 5
1.3論文架構 9
第二章 電路設計 10
2.1 自我注入鎖定雷達簡介 10
2.2 穿戴式自我注入雷達架構 12
2.3 單極天線設計 15
2.4 頻率選擇表面 19
2.5 自我注入標籤 24
2.5.1 瓊斯矩陣運算 24
2.5.2 模擬與量測參數結果 26
第三章 穿戴式生理訊號監測實驗 30
3.1 穿戴式天線電路 30
3.2 接收機解調電路 32
3.3 生理訊號監測 35
3.3.1移動雜波抑制實驗 35
3.3.2生命徵象監測實驗 39
3.3.3動態雜波干擾之生命徵象監測實驗 44
第四章 結論 51
參考文獻 52
參考文獻 References
[1] L. Biel, O. Pettersson, L. Philipson, P. Wide, “ECG Analysis: A new approach in human identification,” Trans. Instrum. Meas., vol. 50, Jun 2001.
[2] ECG Electrode-Easytrode, Technical Details [Online]. Available: http://medisistsurgicals.com/product/ecg-electrode-easytrode/?fbclid=IwAR2jGuO bQtvaFTBvMPCPUa2Pjc1mKLOdMc2tShM6zzHGLO5W7ZUjaOXZkyg
[3] K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys., vol. 18, no. 5, pp. 365-372, Jul. 1996.
[4] H. Ugnell and P. A. Oberg, “The time-variable photoplethysmographic signal; dependence of the heart synchronous signal on wavelength and sample volume,” Med. Eng. Phys., vol. 17, no. 8, pp. 571–578, 1995.
[5] T. Tamura et al., “Wearable photoplethysmographic sensors past and present,” Electronics, vol. 3, no. 2, pp. 282–302, 2014.
[6] Y. Sun and N. Thakor, “Photoplethysmography revisited: From contact to noncontact, from point to imaging,” IEEE Trans. Biomed. Eng. 2016, 63, 463-477.
[7] M.-Z. Poh, N. C. Swenson, and R. W. Picard, “Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 3, pp. 786–794, May 2010.
[8] E. Jonathan and M. J. Leahy, “Cellular phone-based photoplethysmographic imaging,” J. Biophoton., vol. 4, no. 5, pp. 293–296, 2011.
[9] K. M. Chen, Y. Huang, J. Zhang, A Norman “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, NO. 1, January 2000.
[10] N. Hafner, I Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2007, pp. 2300–2302.
[11] Y. S. Lee, P. N. Pathirana, C. L. Steinfort, and T. Caelli, “Monitoring and analysis of respiratory patterns using microwave doppler radar,” IEEE J. Transl. Eng. Health Med., vol. 2, no. 1800912, Oct. 2014.
[12] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[13] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.- Y. Li, and C.-C. Che, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[14] C.-H. Tseng, J.-K. Huang, L.-T. Yu, and C.-L. Chang, “A cost-effective wearable vital-sign sensor with self-oscillating active antenna based on envelope detection technique,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, USA, Jun. 2017, pp. 1222–1224.
[15] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu, and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931–2940, Dec. 2015.
[16] S. M. A. Momeni Hasan Abadi and N. Behdad, “Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 525– 534, Feb. 2016.
[17] M. Z. Joozdani, M. K. Amirhosseini, and A. Abdolali, “Wideband radar cross-section reduction of patch array antenna with miniaturised hexagonal loop frequency selective surface,” Electron. Lett., vol. 52, no. 9, pp. 767–768, Apr. 2016.
[18] S. Hamid, B. Karnbach, H. Shakhtour, and D. Heberling, “Thin multilayer frequency selective surface absorber with wide absorption response,” in Proc. LAPC, Loughborough, UK, 2015.
[19] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6 pp. 351-357, June 1946
[20] F. K. Wang, T. S. Horng, K. C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577–3586, Dec. 2011
[21] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4689–4699, Dec. 2013.
[22] Q. Zeng, W. Ren, H. Zhao, Z. Xue, and W.Li, “Dual-band transmission-type circular polariser based on frequency selective surfaces,” IET, Micro. Antennas Propag.
[23] G. Perez-Palomino, J. E. Page, M. Arrebola, and J. A. Encinar, “A Design Technique Based on Equivalent Circuit and Coupler Theory for Broadband Linear to Circular Polarization Converters in Reflection or Transmission Mode,” IEEE Trans. Antennas Propag., vol. 66, no. 5, pp. 2428–2438, May 2018.
[24] M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw., Antennas, Propag., vol. 4, no. 11, pp. 1764–1772, 2010.
[25] R. C. Jones. “A new calculus for the treatment of optical systems, I. Description and discussion of the calculus,” J. Opt. Soc. Am., vol. 31, no. 7, 488-493, Jul. 1941.
[26] 簡昭和,自我注入鎖定雷達之印刷電路板設計,國立中山大學電機學系碩士論文,民國一百零七年。
[27] Skyworks Solutions, “400-3000 MHz direct quadrature demodulator, ” SKY73009
datasheet, Nov. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code