博碩士論文 etd-0620112-151854 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 方宣喻(Hsuan-Yu Fang) 電子郵件信箱 E-mail 資料不公開
畢業系所 財務管理學系研究所(Finance)
畢業學位 碩士(Master) 畢業時期 100學年第2學期
論文名稱(中) 凱利法則下的槓桿交易策略
論文名稱(英) Leverage Trading Strategy of the Kelly Criterion
檔案
  • etd-0620112-151854.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內 2 年後、校外 3 年後公開

    論文語文/頁數 英文/77
    統計 本論文已被瀏覽 5616 次,被下載 873 次
    摘要(中) 隨著市場上金融創新的日新月異,越來越多的交易者應用商品的槓桿操作,在追求那令人稱羨超額報酬。在理論和實務上,凱利策略是一個頗具盛名但也有相當爭議的操作方法。其核心概念為極大化資本的長期成長率,在過去的歷史上被稱之為凱利準則,甚至被稱之為財富的公式。凱利準則為報酬率和風險的抵換關係,用來決定每次交易操作的槓桿或者是部位的大小。在實證方法上,我們分別報酬的對殘差分配使用 Normal , Generalized Hyperbolic , Generalized Error 這三種不同假設的EGARCH模型,並用其報酬的條件平均數和變異數計算預期的最適操作槓桿。在實務上,資金操作的風險管理比起交易策略是否有擇時能力來的更為重要。因此在本文中我們使用市場上S&P 500 指數的槓桿型ETF 回測了凱利策略在過去十年的表現和風險管理的控制以及其不同策略之間的比較。
    摘要(英) While the much more use of leverage could be effective in generating alpha o investment, the Kelly strategy is an attractive approach to capital creation and growth. It is originated from the Kelly criterion dubbed “ fortunes formula “ which maximizes the long run growth rate of wealth. There is a tradeoff of rate of return versus risk/volatility as a asymptotic function solution of leverage or position size determined by the application of EGARCH model in the different residual assumptions given by the Normal, Generalized Hyperbolic, and the Generalized Error distributions. No matter there is any timing ability in any strategy, risk management is much more important especially with many repeated trading. We present the performance and risk control of the leveraged ETFs tracked the S&P 500 index in the past ten years using optimal leverage strategy derived by the full Kelly and fraction Kelly criterion.
    關鍵字(中)
  • 凱利策略
  • 半凱利策略
  • 槓桿型ETF
  • ARMA-EGARCH模型
  • 標準普爾500指數
  • 關鍵字(英)
  • Leveraged ETFs
  • Kelly Strategy
  • Half Kelly
  • S&P 500 index
  • ARMA-EGARCH
  • 論文目次 中文摘要 ii
    ABSTRACT iii
    1. INTRODUCTION 1
    2. RELATED LITERATURES 10
    3. METHODOLOGY 15
    4. DATA 22
    5. EMPIRICAL RESULTS 39
    6. CONCLUSION 65
    REFERENCE 67
    參考文獻 Applebaum, D. (2004). "Levy processes-from probability to finance and quantum groups." Notices of the AMS 51(11): 1336–1347.
    Avellaneda, M. and S. Zhang (2009). "Path-dependence of Leveraged ETF returns." Courant Institute of Mathematical Sciences New York University, New York and Finance Concepts, New York.
    Bera, A. K. and M. L. Higgins (1997). "ARCH and bilinearity as competing models for nonlinear dependence." Journal of Business & Economic Statistics 15(1): 43-50.
    Bertrand, P. and J. Prigent "Leveraged ETFs and CPPI-type Strategy: Theory, Simulation and Empirical Study."
    Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity." Journal of econometrics 31(3): 307-327.
    Bollerslev, T. (1987). "A conditionally heteroskedastic time series model for speculative prices and rates of return." The review of economics and statistics 69(3): 542-547.
    Carver, A. B. (2009). "Do Leveraged and Inverse ETFs Converge to Zero?" Do 2009(1): 144-149.
    Cooper, T. and D. D. Numerics "Alpha Generation and Risk Smoothing using Managed Volatility."
    D Bernoulli, ‘Specimen Theoriae Novae de Mensura Sortis’ (Exposition of a New Theory on the Measurement of Risk), Commentarii academiae scientiarum imperialis Petropolitanae, vol.5, 1738, pp.175-192, trans. L. Sommer, 1954. Econometrica, vol.22, 1954, pp.23-36.
    E O Thorp, (2006)"The kelly criterion in blackjack sports betting, and the stock market." Handbook of asset and liability management: Theory and methodology: 385. Ederington, L. H. and W. Guan (2000). Measuring implied volatility: Is an average better, Working paper, University of Oklahoma.
    Engle, R. F. (1982). "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation." Econometrica: Journal of the Econometric Society: 987-1007.
    Engle III, R. F. and V. Ng (1991). Measuring and testing the impact of news on volatility, National Bureau of Economic Research Cambridge, Mass., USA.
    Figlewski, S. (1997). "Forecasting volatility." Financial Markets, Institutions & Instruments 6(1): 1-88.
    Giese, G. "On the Performance of Leveraged and Optimally Leveraged Investment Funds."
    Glosten, L. R., R. Jagannathan, et al. (1993). "On the relation between the expected value and the volatility of the nominal excess return on stocks." The Journal of Finance 48(5): 1779-1801.
    Haugh, M. B. "A Note on Constant Proportion Trading Strategies and Leveraged ETFs."
    J L Kelly Jr, ‘A new interpretation of information rate’, Bell System Technical Journal, vol.35, 1956, pp.917-926.
    Lauricella, T. (2009). "ETF Math Lesson: Leverage Can Produce Unexpected Returns." Wall Street Journal.
    Madan, D. B., P. P. Carr, et al. (1998). "The variance gamma process and option pricing." European Finance Review 2(1): 79.
    Nelson, D. B. (1991). "Conditional heteroskedasticity in asset returns: A new approach." Econometrica 59(2): 347-370.
    P A Samuelson, ‘The “Fallacy” of Maximizing the Geometric Mean in Long Sequences of Investing or Gambling’, Proceedings of the National Academy of Sciences of the United States of America, vol.68, 1971, pp.2493-2496.
    Poon, S. H. and C. W. J. Granger (2003). "Forecasting volatility in financial markets: A review." Journal of Economic Literature 41(2): 478-539.
    R Vince, The New Money Management, John Wiley & Sons, New York, 1995.
    R Vince, The Leverage Space Trading Model, John Wiley & Sons, New York, 2009.
    R Vince, The Mathematics of Money Management, John Wiley & Sons, New York 1992, pp.289.
    R Vince, The New Money Management, John Wiley & Sons, New York, 1995.
    Trainor, W. J. and E. Baryla (2008). "Leveraged ETFs: A Risky Double that doesn’t multiply by Two." Journal of Financial Planning 21(5): 48-55.
    Trainor Jr, W. J. "Monthly vs Daily Leveraged Funds."
    口試委員
  • 郭修仁 - 召集委員
  • 李建強 - 委員
  • 王昭文 - 指導教授
  • 黃振聰 - 指導教授
  • 口試日期 2012-06-12 繳交日期 2012-06-20

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫