博碩士論文 etd-0621112-163923 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 倪浩宇 (Hao-Yu Ni) 電子郵件信箱 E-mail 資料不公開
畢業系所 財務管理學系研究所(Finance)
畢業學位 碩士(Master) 畢業時期 100學年第2學期
論文名稱(中) 多因子與VaR模型於崩盤預測之應用 
論文名稱(英) The application of Multifactor model and VaR model in predicting market meltdown
檔案
  • etd-0621112-163923.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內立即公開、校外 5 年後公開

    論文語文/頁數 中文/54
    統計 本論文已被瀏覽 5593 次,被下載 700 次
    摘要(中)     隨著時代的進步,國際間金融市場連結越來越緊密,而以往極少發生之極端事件頻率也遠較過去高,若能有某些指標可以做為大崩盤之預測,做為是否離場的參考,相信一定能有所幫助。
        本研究主要過程為利用 Fama-French 五因子模型以及 VaR 模型,配合集群分析方法,針對台灣五十成分股進行分群,依照個別股票之五因子特性,將性質相近之股票分為同一群,建立投資組合,使用投資組合日報酬計算其 VaR,並觀察VaR spread 在崩盤前走勢如何,是否具有某種特性。比較各集群群對於崩盤事件的預測能力,以及風險因子與預測能力之關係。
        結果發現,對於大崩盤發生之前,VaR spread 走勢往往波動度會明顯上升。除了 2000 年崩盤事件以外。而預測能力較好之集群,往往其成分股與崩盤原因有較密切之關係。金融股對金融海嘯敏感;電子出口廠商股對匯率影響反應較強烈。整體而言,較具有預測能力之集群個股,其對於動能因子、投資人情緒有較強之敏感度,而對於淨值市價比之敏感度極小。若要以 VaR spread 走勢作為預測參考,可以選擇符合前述條件之個股來組成投資組合
    摘要(英)    With the progress of the times, the international financial market link is becoming more and more closely, while the probability of extreme events more and more high, if there are some indicators can be used as a prediction of the crash, as whether to sell the stocks, it can be very useful.
       The study process for the use of the Fama-French five-factor model, as well as the VaR model, with the cluster analysis method, and clustering for Taiwan 50
    constituent stocks in accordance with the five-factor characteristics of the individual stocks, the similar nature of stock into the same group, the establishment of portfolio, the use of portfolio daily returns to calculate the the VaR, and observe the VaR spread before the crash, how the trend, and whether certain characteristics. Comparison of the cluster group for the predictive ability of the collapse events, as well as the
    relationship between risk factors and predictive ability.
       The results of VaR spread movements are often subject to fluctuations significantly change the situation before the crash occurs. By intense will be stable or
    from stable will be severe. Good predictive ability of the cluster, often its constituent stocks and the collapse of the reasons more closely the relationship. Financial stocks sensitive to the financial tsunami; Electronic stocks are subject to exchange rate affect.Overall, the group with the best predictive ability is more sensitive to momentum effects and investor sentiment indicators ,but non-sensitive to book-to-market factor.To use the Var spread as a predictor of reference,choosing to meet the aforementioned conditions of stocks to the portfolio is a nice way.
    關鍵字(中)
  • 股票報酬
  • 崩盤
  • 集群分析
  • 風險因子
  • 風險值
  • 關鍵字(英)
  • VaR
  • Risk factors
  • Cluster analysis
  • financial market meltdown
  • Stock returns
  • 論文目次 摘 要 I
    Abstract II
    圖 次 V
    表 次 VI
    第一章 緒論 1
    第一節 研究動機與背景 1
    第二節 研究目的 4
    第二章 文獻探討 6
    第一節 個股報酬影響因素之文獻 6
    第二節 VaR模型之相關文獻 8
    第三章 模型與研究方法 10
    第一節 多因子模型 10
    第三節 投資組合報酬之計算與單根檢定 12
    第四節 EGARCH(1,1)模型 13
    第五節 VaR之簡介與VaR Spread之定義 13
    第六節 崩盤之定義 15
    第七節 具有預測能力之條件 16
    第八節 資料處理 17
    第九節 研究流程圖 20
    第四章 實證研究結果 21
    第一節 基本資料分析 21
    第二節 集群分析 22
    第三節 單根檢定 24
    第四節 預測能力比較 24
    第五節 集群預測能力與風險因子之關聯 28
    第五章 結論與建議 30
    第一節 研究結論 30
    第二節 後續研究建議 31
    參考文獻 32
    參考文獻 1.Alexander, C. O. (1997). On the CoVaRiance Matrices Used in Value at Risk. The Journal of Derivatives(spring), pp. 50-62.
    2.Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press. New York.
    3.Baker, M. a. (2007). Investor sentiment and the stock market. Journal of Economic Perspectives 21, pp. 129-151.
    4.Barberis, N. &. (2005). Comovement. Journal of Financial Economics, Elsevier 75(2), pp. 283-317.
    5.Basu, S. (1983). The relationship between earnings yield,market value,and return for NYSE common stocks:Futher evidence,Journal of Financial Economics. Journal of Financial Economics 12, pp. 129-156.
    6.Beder, T. (1995). VaR:Seductive but Dangerous. Financial Analysis Journal(September-October).
    7.Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, pp. 307-327.
    8.Brown, G. W. (2005). Investor sentiment and asset valuation. Journal 78(2), pp. 405-440.
    9.Chen, N. R. (1986). Economic forces and the stock market. Journal of Business 59, pp. 383-403.
    10.Colm, K. A. (2000). MultiVaRiate GARCH Modeling of Exchange Volatility Transmission in the European Monetary System. The Financial Review 41, pp. 29-48.
    11.Engel, J. (1999). Conservatism,Accuracy and Efficiency:Comparing Value-at-Risk Models. Working Paper 2. Australian Prudential Regulation Authority.
    12.Fama, E. F. (1992). The cross-section of expected stock returns. Journal of Finance 47, pp. 427-465.
    13.Fama, E. F. (1993). Common risk factors in the returns on stocks and. Journal of Finance 33, pp. 3-56.
    14.Gombola, M. J.-Y. (1993). Considering Dividend Stability in the Relation between Dividend Yields and Stock Returns. Journal of Financial Research, Southern Finance Association and Southwestern Finance Association, 16(2), pp. 139-150.
    15.H. Hong, a. J. (2007). Disagreement and the Stock Market. Journal of Economic Perpective 21, pp. 109-128.
    16.Hausman, J. A. (1992). An ordered probit analysis of transaction stock prices. Journal of Financial Economics 31(3), pp. 319-379.
    17.Hendricks, D. (1996). Evaluation of Value-at-Risk Models Using Historical Data. Economics Policy Review, pp. 39-69.
    18.Hsiang-His Liu, W. C.-C.-K. (2009). Could Trading Volume Play a Critical Role for Market Return?-Evidence from Taiwan’s Financial Markets with VaRious Volatility Models. working paper.
    19.Jegadeesh, N. a. (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance 48, pp. 65-91.
    20.Johansen, A. S. (2000). The NASDAQ crash of April 2000:Yet another example of log-periodicity in a speculative bubble ending in a crash. The European Physical Journal B 17(2), pp. 319-328.
    21.Lintner, J. (1965). The valuation of asset and the selection of risk investment in stock. 47(1), pp. 13-37.
    22.Markowitz, H. (1952). Portfolio Selection,Journal of Finance. 7, pp. 77-91.
    23.Moskowitz, T. J. (1999). Do Industries Explain Momentum? The Journal of Finance 54, pp. 1249-1290.
    24.MossinmJ. (1966). Equilibrium in a Capital Asset Market. Econometrica 34(4), pp. 768-873.
    25.Pontiff, J. (1998). Book-to-market ratios as predictors of market returns. Journal of Financial Economics 49, pp. 141-160.
    26.Rosenberg, B. R. (1985). Persuasive evidence of market. Journal of Portfolio Management 11(2), pp. 9-14.
    27.Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theroy 13, pp. 346-360.
    28.Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under. Journal of Finance 19(3), pp. 425-442.
    29.Sornette, D. (2003). Why Stock market crashes as social phase transitions. Journal of Economic Dynamics & Control 32(1), pp. 137-155.
    30.Y. S. Kim, S. T. (2010). Computing VaR and AVaR In Infinitely Divisible Distributions. Probability and Mathematical Statistics 30(2), pp. 223-245.
    31.張士杰. (1999, 6). 運用拔靴複製法構建VaR估計量之分配. 銘傳大學金融研究所論文.
    32.陳安琳. (2002). 臺灣股票報酬之穩定因素 – 交叉確認、 因素分析與模擬分析. 管理學報 19(3), pp. 519–542.
    33.謝振耀. (2001). 台灣債券投資組合風險值之評估. 國立政治大學國際貿易學系碩士論文.
    口試委員
  • 郭修仁 - 召集委員
  • 李建強 - 委員
  • 王昭文 - 指導教授
  • 黃振聰 - 指導教授
  • 口試日期 2012-06-12 繳交日期 2012-06-21

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫