論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
用於心律變異偵測之高指向可穿戴天線 A Metasurface-based Wearable Antenna with Enhanced Directivity for Heart Rate Variability Monitoring |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
98 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-06-22 |
繳交日期 Date of Submission |
2022-07-21 |
關鍵字 Keywords |
自我注入鎖定(SIL)雷達、可穿戴裝置、超穎表面、微帶天線、心率變異(HRV) wearable device, metasurface, Heart rate variability (HRV), self-injection-locked (SIL) Doppler radar, wearable antenna |
||
統計 Statistics |
本論文已被瀏覽 387 次,被下載 65 次 The thesis/dissertation has been browsed 387 times, has been downloaded 65 times. |
中文摘要 |
本研究在設計操作於 5.8 GHz 的胸戴式線性極化矩形環狀天線 (rectangular ring antenna, RRA)與基於 FR-4 的超穎表面,用於監測心率變異 (heart rate variability, HRV)。設計上納入具有方形環(square loop, SL)的方形裂環諧振器(square split-ring resonator, SSRR) 超穎表面來增強天線的指向性。通過偵測接近理想心臟運動之週期性擺動銅金屬板,證實由於超穎表面所增加的指向性增益會使偵測性能提高 77%。然後將其整合於調頻雙基自我注入鎖定(self-injection-locked, SIL)雷達系統中,其調制器與解調器在空間上相互分離,並成功偵測到人體的呼吸及心跳。在生命徵象偵測實驗中將使用SIL雷達測得的心跳時間間隔(interbeat interval, IBI)與使用心電圖(electrocardiogram, ECG)裝置測得之參考值進行比較,結果證明是有效及準確的,在整個實驗過程中,在不同受測者幾次測試中最大的百分比均方根誤差(percentage root mean square error, PRMSE)及平均絕對百分比誤差(mean absolute percentage error, MAPE)值分別為 6.26% 及 3.90%。本研究解決了降低天線結構整體面積及同時輻射高指向性電磁波並在靠近人體胸部時保持低反射係數的挑戰。 |
Abstract |
This research designs a chest-worn linearly polarized rectangular ring antenna (RRA) operating at 5.8 GHz and an FR-4-based metasurface for heart rate variability (HRV) monitoring. The inclusion of metasurface in the design enhances the directivity of the antenna by using a square split-ring resonator (SSRR) with a square loop (SL). The antenna structure was tested to detect a near-ideal cardiac movement using a periodically moving copper plate and confirmed a 77% improvement in performance due to the increased directive gain provided by the metasurface. It was then integrated into a frequency-modulated bistatic self-injection-locked (SIL) radar system where the modulator and demodulator are spatially separated from each other and successfully detected human respiration and heartbeat. The interbeat interval (IBI) of the vital sign detection experiment using the SIL radar was compared to its ECG reference and was proven to be effective and accurate having an average percentage root mean square error (PRMSE) and average mean absolute percentage error (MAPE) value of 6.26% and 3.90% throughout the experimentation with different subjects and several trials. The challenge of reducing the overall footprint of the antenna structure while simultaneously radiating highly directive electromagnetic waves and maintaining a low reflection coefficient when in proximity to a human chest is solved in this research. |
目次 Table of Contents |
論文審定書 ……………………………….…………………………………………… i Acknowledgment ….…………………………………………………………………… ii Abstract (Chinese) …………………………………….…………………….………… iii Abstract (English) ………………………………………………...…………………… iv Table of Contents …………………………………………….………………………… v List of Figures ………………………………………….……………………………... vii List of Tables ……………………………………………………….…….….…………. x CHAPTER 1 – INTRODUCTION …………...….…………………………………… 1 1.1 Background ………………………………………………………………… 1 1.2 Objectives …………………………….……………………………….……. 3 1.3 Scope and Limitations ……………………………………………………… 4 1.4 Theoretical Framework …………………………...………………………… 5 CHAPTER 2 – REVIEW OF RELATED LITERATURE …...…………………… 10 2.1 Wearable Antennas ……………………………………………….……… 10 2.2 Wearable Antennas for Vital Sign Detection ……………………………… 13 CHAPTER 3 – METHODOLOGY ………………………………………………… 19 3.1 Design Process Synopsis ………………………………………….……… 19 3.2 Antenna Design ……………………………………...……………………. 21 3.3 Metasurface Design ………………………………….…………………… 26 3.4 Design Measurement ……………………………………………………… 29 3.5 The Moving Copper Plate Experimental Setup ……………………………. 31 3.6 The Vital Sign Detection Setup …………………….……………………… 34 CHAPTER 4 – RESULTS AND DISCUSSION …………………………………… 40 4.1 Scattering Parameter ………………….………………...…………………. 40 4.2 Antenna Radiation Pattern ………………………………………………… 48 4.3 Antenna Directive Gain …………………………………………………… 53 4.4 Metasurface Coefficients …………………….……………………………. 58 4.5 The Moving Copper Plate Experiment ……………………………………. 61 4.6 The Vital Sign Detection Experiment …………………...………………… 63 4.7 Comparison …………………………………………….………………… 77 CHAPTER 5 – CONCLUSION …………………………………….………………. 79 5.1 Recommendation ……………………………………….………………… 79 REFERENCES ………………………………………………………………………. 81 |
參考文獻 References |
REFERENCES [1] U. S. N. Department, Principles and Applications of Underwater Sound, Originally Issued as Summary Technical Report of Division 6, NDRC, Vol. 7, 1946, Reprinted...1968. 1969. [2] D. A. Joseph, Measuring Ocean Currents: Tools, Technologies, and Data. Newnes, 2013. [3] R. Song, H. Esmaiel, H. Sun, J. Qi, H. Zhang, and M. Zhou, Multi-Submarines Detection Using Multistatic Sonar System. 2020, p. 1675. [4] N. Xiang and J. M. Sabatier, “Laser Doppler vibrometer-based acoustic landmine detection using the fast M-sequence transform,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 4, pp. 292–294, Oct. 2004. [5] Y. Qu, T. Wang, and Z. Zhu, “Vision-aided laser Doppler vibrometry for remote automatic voice detection,” IEEE/ASME Trans. Mechatron., vol. 16, no. 6, pp. 1110–1119, Dec. 2011. [6] G. Wolfschmidt, “Christian Doppler (1803-1853) and the impact of Doppler effect in astronomy,” Acta Univ. Carol., Math. Phys. Suppl., vol. 46, pp. 199–211, Jun. 2005. [7] E. Wu, “Redshift caused by acceleration Doppler effect and Hubble’s law based on Wu’s spacetime accelerating shrinkage theory,” Amer. J. Phys., vol. 6, pp. 10–15, Apr. 2017. [8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013. [9] C. Li, J. Lin, and Y. Xiao, “Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector,” IEEE Eng. Med. Biol. Soc., Aug. 2006, pp. 2235–2238. [10] N. Hafner, I. Mostafanezhad, V. M. Lubecke, O. Boric-Lubecke, and A. Host-Madsen, “Non-contact cardiopulmonary sensing with a baby monitor,” IEEE Eng. Med. Biol. Soc., Aug. 2007, pp. 2300–2302. [11] F. JalaliBidgoli, S. Moghadami, and S. Ardalan, “A compact portable microwave life-detection device for finding survivors,” IEEE Embed. Syst. Lett., vol. 8, no. 1, pp. 10–13, Mar. 2016. [12] C. Gu et al., “Accurate respiration measurement using dc-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3117–3123, Nov. 2012. [13] A. Singh and V. Lubecke, “A heterodyne receiver for harmonic Doppler radar cardiopulmonary monitoring with body-worn passive RF tags,” IEEE MTT-S Int. Microw. Symp., May 2010, pp. 1600–1603. [14] S. O. Piper, “Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep,” in Proc. Int. Radar Conf., May 1995, pp. 563–567. [15] M.-C. Tang, F.-K. Wang, and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324–5333, Dec. 2017. [16] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011. [17] T.-S. Horng, “Self-injection-locked radar: an advance in continuous-wave technology for emerging radar systems,” in Proc. Asia-Pacific Microw. Conf. (APMC), Nov. 2013, pp. 566–569. [18] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, “Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 4165–4169, Sep. 2015. [19] S. Yan, P. J. Soh, and G. A. E. Vandenbosch, “Compact all-textile dual-band antenna loaded with metamaterial-inspired structure,” IEEE Antennas Wirel. Propagation Lett., vol. 14, pp. 1486–1489, 2015. [20] R. Joshi et al., “Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN,” IEEE Access, vol. 8, pp. 89468–89478, 2020. [21] M. El Atrash, M. A. Abdalla, and H. M. Elhennawy, “A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications,” IEEE Trans. Antennas Propag., vol. 67, no. 10, pp. 6378–6388, Oct. 2019. [22] T. T. Le and T.-Y. Yun, “Miniaturization of a dual-band wearable antenna for WBAN applications,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 8, pp. 1452–1456, Aug. 2020. [23] K.-L. Wong, H.-J. Chang, C.-Y. Wang, and S.-Y. Wang, “Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 213–217, Jan. 2020. [24] R. E. Arif, M.-C. Tang, W.-C. Su, T.-S. Horng, F.-K. Wang, and C.-H. Tseng, “Designing a metasurface-based tag Antenna for wearable vital sign sensors,” in 2019 IEEE MTT-S Int. Microw. Symp. (IMS), Jun. 2019, pp. 373–376. [25] P. Salonen, L. Sydanheimo, M. Keskilammi, and M. Kivikoski, “A small planar inverted-F antenna for wearable applications,” in Digest of Papers. Third Int. Symp. Wearable Computers, Oct. 1999, pp. 95–100. [26] P. Salonen, M. Keskilammi, and L. Sydanheimo, “A low-cost 2.45 GHz photonic band-gap patch antenna for wearable systems,” in Proc. 11th Int. Conf. Antennas Propag., (ICAP), Apr. 2001, vol. 2, pp. 719–723. [27] P. J. Massey, “Mobile phone fabric antennas integrated within clothing,” in Proc. IEE 11th Int. Conf. Antennas Propag., Apr. 2001, vol. 1, pp. 344–347. [28] C. A. Balanis, “Antenna theory: a review,” Proc. IEEE, vol. 80, no. 1, pp. 7–23, Jan. 1992. [29] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu, and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931–2940, Dec. 2015. [30] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013. [31] Y.-C. Chiu, F.-K. Wang, Y.-R. Chou, and T.-S. Horng, “Wearable Doppler radar health monitor with gesture control,” in Proc. Asia-Pacific Microw. Conf., Nov. 2014, pp. 944–946. [32] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946. [33] C. Balanis, Antenna Theory: Analysis and Design, vol. 1. 2005. [34] A. Scidà et al., “Application of graphene-based flexible antennas in consumer electronic devices,” Materials Today, vol. 21, no. 3, pp. 223–230, Apr. 2018. [35] R. B. V. B. Simorangkir, Y. Yang, R. M. Hashmi, T. Björninen, K. P. Esselle, and L. Ukkonen, “Polydimethylsiloxane-embedded conductive fabric: Characterization and application for realization of robust passive and active flexible wearable antennas,” IEEE Access, vol. 6, pp. 48102–48112, 2018. [36] R. A. Liyakath, A. Takshi, and G. Mumcu, “Multilayer stretchable conductors on polymer substrates for conformal and reconfigurable antennas,” IEEE Antennas Wireless Propag. Lett., vol. 12, no., pp. 603–606, 2013. [37] A. Rahman, M. T. Islam, M. J. Singh, and N. Misran, “Sol–gel synthesis of transition-metal doped ferrite compounds with potential flexible, dielectric and electromagnetic properties,” RSC Adv., vol. 6, pp. 84562–84572, Aug. 2016. [38] D. N. Sivasubramani, S. B S, E. Manikandan, and R. Sankararajan, “A stretchable smart and highly efficient radio frequency antenna on low cost substrate,” Microw. Opt. Technol. Lett., vol. 60, pp. 1798–1803, Jul. 2018. [39] K. N. Paracha, S. K. Abdul Rahim, P. J. Soh, and M. Khalily, “Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing,” IEEE Access, vol. 7, pp. 56694–56712, 2019. [40] A. Tsolis, W. G. Whittow, A. A. Alexandridis, and J. Vardaxoglou, “Embroidery and related manufacturing techniques for wearable antennas: Challenges and opportunities,” Electronics, vol. 3, pp. 314–338, May 2014. [41] J. Zhong, A. Kiourti, T. Sebastian, Y. Bayram, and J. L. Volakis, “Conformal load-bearing spiral antenna on conductive textile threads,” IEEE Antennas Wireless Propag. Letters, vol. 16, pp. 230–233, 2017. [42] H. R. Khaleel, “Design and fabrication of compact inkjet printed antennas for integration within flexible and wearable electronics,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 10, pp. 1722–1728, Oct. 2014. [43] S. M. Salleh, M. Jusoh, A. H. Ismail, M. N. M. Yasin, M. R. Kamarudin, and R. Yahya, “Circular polarization textile antenna for GPS application,” in Theory and Applications of Applied Electromagnetics. Cham, Switzerland: Springer, 2015, pp. 255–263. [44] P.-H. Juan, H.-C. Tsai, and F.-K. Wang, “Wearable vital sign sensing radar antenna with moving clutter immunity,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Sep. 2020, pp. 247–249. [45] R. E. Arif, W.-C. Su, M.-C. Tang, T.-S. Horng, and F.-K. Wang, “Chest-Worn Self-Injection-Locked Oscillator Tag for Monitoring Heart Rate Variability,” in Proc. IEEE/MTT-S Int. Microw. Symp. (IMS), Aug. 2020, pp. 512–515. [46] S. Dong et al., “Doppler cardiogram: a remote detection of human heart activities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1132–1141, Mar. 2020. [47] F. Hirtenfelder, “Effective Antenna Simulations using CST MICROWAVE STUDIO®,” in Proc. 2nd Int. ITG Conf. Antennas, Mar. 2007, pp. 239–239. [48] S. Zahertar, A. D. Yalcinkaya, and H. Torun, “Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies,” AIP Advances, vol. 5, no. 11, p. 117220, Nov. 2015. [49] A. A. Danilov, “Unstructured Tetrahedral Mesh Generation Technology,” vol. 50, no. 1, p. 18, 2010. [50] R. W. Schafer, “What is a Savitzky-Golay filter?,” IEEE Signal Process. Mag., vol. 28, no. 4, pp. 111–117, Jul. 2011. [51] A. Aygun, H. Ghasemzadeh, and R. Jafari, “Robust interbeat interval and heart rate variability estimation method from various morphological features using wearable sensors,” IEEE J. Biomed. Health Inform., vol. PP, pp. 1–1, Dec. 2019. [52] R. Mishra, J. M. J. W. Jayasinghe, G. Chathuranga, and R. Mishra, “Analysis of the Relationship Between Substrate Properties and Patch Dimensions in Rectangular-Shaped Microstrip Antennas,” 2018, pp. 65–72. [53] D. Kurup, W. Joseph, E. Tanghe, G. Vermeeren, and L. Martens, “Antenna independent path loss model for in-body communication in homogeneous tissue,” in Proc. 6th Eur. Conf. Antennas Propag. (EUCAP), Mar. 2012, pp. 3375–3377. [54] R. Moore, “Effects of a surrounding conducting medium on antenna analysis,” IEEE Trans. Antennas Propag., vol. 11, no. 3, pp. 216–225, May 1963. [55] T. T. Le and T.-Y. Yun, “Wearable dual-band high-gain low-SAR antenna for off-body communication,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 7, pp. 1175–1179, Jul. 2021. [56] J. Puskely, M. Pokorny, J. Lacik, and Z. Raida, “Wearable disc-like antenna for body-centric communications at 61 GHz,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1490–1493, 2015. [57] S. Velan et al., “Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 249–252, 2015. [58] X. Qing, Z. N. Chen, T. S. P. See, C. K. Goh, and T. M. Chiam, “RF transmission characteristics in/through the human body,” in Proc. IEEE Conf. Cybern. Intell. Syst., Jun. 2010, pp. 20–23. [59] Dielectric Properties of Body Tissues. Accessed: Jun. 10, 2020. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/ [60] M. H. Weik, “transmission coefficient,” in Computer Science and Communications Dictionary, M. H. Weik, Ed. Boston, MA: Springer US, 2001, pp. 1820–1820. [61] R. El Arif, W.-C. Su, and T.-S. Horng, “Chest-worn heart rate variability monitor with a self-injection-locked oscillator tag,” IEEE Trans. Microw. Theory Techn., pp. 1–1, 2022. [62] J. Wang, X. Wang, Z. Zhu, J. Huangfu, C. Li, and L. Ran, “1-D microwave imaging of human cardiac motion: an ab-initio investigation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2101–2107, May 2013. [63] R. El Arif, W.-C. Su, and T.-S. Horng, “Chest-worn heart rate variability monitor with a self-injection-locked oscillator tag,” IEEE Trans. Microw. Theory Techn., pp. 1–1, 2022. [64] “Vital signs (body temperature, pulse rate, respiration rate, blood pressure).” https://www.hopkinsmedicine.org/health/conditions-and-diseases/vital-signs-body-temperature-pulse-rate-respiration-rate-blood-pressure. [65] S. Dong et al., “Doppler cardiogram: a remote detection of human heart activities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1132–1141, Mar. 2020. [66] V. L. Petrović, M. M. Janković, A. V. Lupšić, V. R. Mihajlović, and J. S. Popović-Božović, “High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave Doppler radar,” IEEE Access, vol. 7, pp. 74721–74733, 2019. [67] Y. Ding, X. Yu, C. Lei, Y. Sun, X. Xu, and J. Zhang, “A novel real-time human heart rate estimation method for noncontact vital sign radar detection,” IEEE Access, vol. 8, pp. 88689–88699, 2020. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |