博碩士論文 etd-0623112-002029 詳細資訊

[回到前頁查詢結果 | 重新搜尋]

姓名 楊韓緻 (Han-Chih Yang) 電子郵件信箱 E-mail 資料不公開
畢業系所 財務管理學系研究所(Finance)
畢業學位 博士(Ph.D.) 畢業時期 100學年第2學期
論文名稱(中) VAR模型-股票市場危機的預測   
論文名稱(英) Predicting Stock Market Crises by VAR Model
  • etd-0623112-002029.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。

    電子論文:使用者自訂權限:校內 5 年後、校外 5 年後公開

    論文語文/頁數 英文/30
    統計 本論文已被瀏覽 5595 次,被下載 219 次
    摘要(中) 在現在的學術上,有許多研究方法來預測金融危機。而許多金融機構也採用了代表性的指標來預測危機。這些方法和指標雖然不可能直接評估,但還是以不同的估計方式估來呈現,並朝各方面的發展。儘管,至今仍無法證明哪一方法或指標最為適當,我們仍然試圖找到具有某一特性的產業能幫助我們在股票危機發生前提前預警做出適當地應變措施。
    摘要(英) There are several methods to predict financial crises. There are also several types of indicators used by financial institutions. These indicators, which are estimated in different ways, often show various developments, although it is not possible to directly assess which is the most suitable. Here, we still try to find what characteristics that industry group has and forecast financial crises
    In this paper, our data started from monthly of 1977 January to 2008 December in S&P100. We consider Fama-French and Cluster Analysis to process data to make data with same characteristic within a group. Then, we use GARCH type models and apply it to VaR predicting stock turmoil.
    In conclusion, we found that the group which has high kurtosis value is the key factor for predicting stock crises instead of volatility. Moreover, the characteristics of this industry which can predict stock crises is a great scale. On the other hand, we can through this model to double check the reaction for anticipating. Therefore, people can do some actions to control risk to reduce the loss.
  • SGT分配
  • VaR模型
  • GARCH模型
  • 股票危機
  • 危機預測
  • 預警系統
  • 關鍵字(英)
  • stock crises
  • VaR
  • SGT
  • early warning system
  • predicting crises
  • 論文目次 論文審定書 i
    摘要 ii
    Abstract iii
    Tables v
    Figures vi
    1. Introduction 1
    2. Method 6
    2.1 GARCH (1, 1) model with skewed generalized t distribution (GARCH-SGT) 6
    2.2 skewed general t density 6
    2.3 Measurement and evaluation for distribution-based VaR models 8
    2.3.1 Definition and estimation 8
    2.3.2 Conditional-SGT-VaR approach 8
    2.4 Evaluating VaR performance 8
    2.4.1 Unconditional coverage test (LRuc) 9
    2.4.2 Conditional coverage test (LRcc) 9
    3. Data 11
    4. Empirical result 12
    4.1 Result of stock market 12
    4.2 Evaluting the performance of VaR 17
    4.3 Analysis of clustering 17
    5. Conclusion 19
    Reference 21
    參考文獻 A.Cipollini and G. Kapetanios, 2009, Forecasting financial crises and contagion in Asia using dynamic factor analysis, Journal of Empirical Finance 16, 188–200.
    Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327.
    Bedendo, M., Campolongo, F., Joossens, E., Saita, F., 2010. Pricing multiasset equity
    options: how relevant is the dependence function? Journal of Banking and Finance 34, 788–801.
    Bali, T.G., Theodossiou, P., 2007. A conditional-SGT-VaR approach with alternative GARCH models. Ann. Oper. Res. 151 (1), 241–267.
    Bali, T.G., Mo, H., Tang, Y., 2008. The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR. J. Bank. Finance 32, 269–282.
    Bali, T., 2007. A generalized extreme value approach to financial risk measurement.
    Journal of Money, Credit and Banking 39, 1613–1649.
    Christoffersen, P.F., 1998. Evaluating interval forecasts. International Economic Review 39, 841–862.
    Duffie, D., Pan, J., 1997. An overview of value-at-risk. The Journal of Derivatives, Spring, 7–49.
    Engle, R.F., 1982. Autoregressive conditional heteroskedasticity with estimates of variance of United Kingdom inflation. Econometrics 50 (4), 987–1007.
    Frankel, J.A., Rose, A.K., 1996. Currency crashes in emerging markets: an empirical treatment. Journal of International Economics 41, 351–366.
    Fajardo, J., Farias, A., 2010. Derivative pricing using multivariate affine generalized
    hyperbolic distributions. Journal of Banking and Finance 34, 1607–1617.
    Harris, R.D.F., Kucukozmen, C.C., 2001. The empirical distribution of UK and US stock returns. J. Bus. Finance Acc. 28, 715–740.
    Harris, R.D.F., Kucukozmen, C.C., Yilmaz, F., 2004. Skewness in the conditional distribution of daily equity returns. Appl. Finance Econ. 14, 195–202.
    Jegadeesh, N., and S. Titman, 1993, Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency, Journal of Finance, 48, 65-91.
    Kaminsky, G.L., Lizondo, S., Reinhart, C.M., 1998. Leading indicators of currency crises. IMF Staff Papers 45 (1).
    Kim, Y.S., Rachev, S.T., Bianchi, M.L., Fabozzi, F.J., 2008. Financial market models
    with Levy processes and time-varying volatility. Journal of Banking and Finance
    32, 1363–1378.
    Kupiac, P., 1998. Stress testing in a value at risk framework. The Journal of Derivatives 6 (1) , 7–25.
    Kupiec, P.H., 1995. Techniques for verifying the accuracy of risk measurement models. J. Derivatives 3, 73–84.
    Hung-Chun Liu, Ming-Chih Lee, Ching-Mo Chang, 2009.The role of SGT distribution in Value-at-Risk estimation: evidence from the WTI crude oil market. Investment Management and Financial Innovations, Volume 6, Issue 1.
    McDonald, J., Newey, W., 1988. Partially adaptive estimation of regression models via the generalized t distribution. Econometric Theory 4, 428–457.
    Moskowitz, T.J., Grinblatt, M., 1999, Do industries explain momentum? Journal of Finance, 54, 1249-1290.
    Sorwar, G., Dowd, K., 2010. Estimating financial risk measures for options. Journal of Banking and Finance 34, 1982–1992.
    Theodossiou, P., 1998. Financial data and the skewed generalized t distribution. Manage. Sci. 44 (12), 1650–1661.
    Virginie Coudert and Mathieu Gex, 2008, Does risk aversion drive financial crises? Testing the predictive power of empirical indicators, Journal of Empirical Finance 15, 167–184.
    Wan-Hsiu Cheng and Jui-Cheng Hung, 2011, Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns. Journal of Empirical Finance. 18, 160–173.
    Young Shin Kim, Svetlozar T. Rachev, Michele Leonardo Bianchi, Ivan Mitov, and Frank J. Fabozzi, 2011, Time series analysis for financial market meltdowns. Journal of Banking & Finance 35,1879–1891.
  • 郭修仁 - 召集委員
  • 李建強 - 委員
  • 王昭文 - 指導教授
  • 黃振聰 - 指導教授
  • 口試日期 2012-06-12 繳交日期 2012-06-23

    [回到前頁查詢結果 | 重新搜尋]