論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
含醣多硫化物的材料合成與應用 Synthesis and application of sugar-containing polysulfide material |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
101 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2020-07-02 |
繳交日期 Date of Submission |
2020-07-24 |
關鍵字 Keywords |
正極材料、多硫共聚合物、黏著劑、反硫化、鋰硫電池 Cathode material, inverse-vulcanization, polysulfide, Binder, Lithium-sulfur batteries |
||
統計 Statistics |
本論文已被瀏覽 64 次,被下載 0 次 The thesis/dissertation has been browsed 64 times, has been downloaded 0 times. |
中文摘要 |
在過去的十年來,對於環境日益關注使全球對於含有重金屬的危險殘留物如廢舊攜帶式電池的相關法規更加嚴格,促使社會尋找技術替代品來處理這些類型的殘留物,因為全世界電池的消耗量相當大1,現今以二次性電池中的鋰電池為主相較於其他鉛蓄電池、鎳鎘電池汙染較少,在正極材料中硫具有高達 1680 mAh/g 理論放電比容量,而且價格便宜對環境也不會造成汙染,適合作為開發鋰電池的正極材料。 在鋰硫電池中需要使用黏著劑連接起活物之間的橋梁,而有適合的黏著劑才能增強電池間的效能,黏著劑中以聚偏二氟乙烯(polyvinylidene difluoride,PVDF)、水性黏著劑的關華豆膠(Guar gum,GG)、羧甲基纖維素(Carboxymethyl Cellulose,CMC)為大宗,而使用 PVDF 需搭配有毒溶液 NMP (1-Methyl-2-pyrrolidone)對於環境不友善,因此電池方面研究開始致力於水性黏著劑上,本論文使用醣的結構作為基底,合成含烯烴鍵的衍生物與元素硫進行反硫化交聯反應形成多硫共聚物,並應用於鋰硫電池中的陰極材料,從鋰硫電池測試中在 0.1 C 下放電電容量為 1469 mAh/g,並且在 0.2 C 下進行 100 次循環後還有 527.4 mAh/g 的放電電容,本論文所開發新的材料在鋰硫電池製備中不須額外使用黏著劑下也保有出色的電容量。 |
Abstract |
Over the past decade the, increasing environmental concerns have made the global regulations more stringent for hazardous residues containing heavy metals such as those used in portable batteries. This prompts the society to look for technological alternatives to deal with these types of since because of the battery consumption worldwide is quite large. Nowadays, lithium batteries generally cause less pollution than lead storage batteries and nickel-cadmium batteries. For the cathode material, sulfur has a high theoretical specific discharge capacity of 1680 mAh/g, high availability at low cost and does not cause pollution to the environment. Thus, it is suitable as a positive electrode material for lithium battery development. In lithium-sulfur batteries, it is necessary to use adhesives to connect between the active materials. Suitable adhesives can enhance the efficiency of the batteries. Among the adhesives, PVDF and water-based adhesives (GG, CMC) are commonly used. PVDF needs to be applied with the toxic, NMP, which is not friendly to the environment, so research in Li-S battery began to work on water-based adhesives. In this thesis, by using the sugar structure as the basis, alkene functionality was introduced by fisher glycosylation. The inverse-vulcanization reaction with elemental sulfur with the olefin yielded a sugar-containing polysulfide copolymer, which was tested as the cathode material in a lithium-sulfur battery. The discharge capacity made with 70 wt% sulfur polysulfide in the absence of adhesive was found to be for the Li-S battery 1469 mAh/g at 0.1 C, and after 100 cycles at 0.2 C there was still a discharge capacity of 527.4 mAh/g, which is a comparable battery performance to those reported in the literature. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目次 v 圖目錄 viii 表目錄 xi 流程目錄 xii 光譜目錄 xiii 縮寫表 xiv 第一章 緒論 1 1.1 研究背景 1 1.1.1. 綠色化學 2 1.1.2. 硫的性質 4 1.1.3. 反硫化反應(inverse-vulcanization) 5 1.1.4. 鋰硫電池(Lithium-sulfur Batteries) 6 1.2 文獻回顧 7 1.2.1. 多硫共聚物的應用 7 1.2.2. 電池黏著劑(Binder) 12 1.2.3.鋰硫電池的限制 15 1.3 研究動機 17 第二章 實驗結果與討論 18 2.1 合成含有烯烴鍵的醣類 18 2.1.1. 合成具有丙烯基哌喃醣苷 18 2.1.2. 合成具有油醇哌喃醣苷 19 2.2. 合成具有烯烴鍵的醣交聯成多硫共聚物 21 2.2.1. 合成具有丙烯基哌喃醣苷的多硫共聚物 21 2.2.2. 合成具有油醇哌喃醣苷的多硫共聚物 24 2.3. 含醣多硫共聚物性質測試 25 2.3.1. Poly (S-r-(β-Oleyl-Glc))外觀圖 25 2.3.2. Poly (S-r-(β-Oleyl-Glc)) 1H NMR 光譜比較 26 2.3.3. Poly (S-r-(β-Oleyl-Glc))紅外光譜 (infrared spectroscopy,IR) 27 2.3.4. Poly (S-r-(β-Oleyl-Glc)) X 射線繞射儀 (X-ray diffractometer,XRD) 30 2.3.5. Poly (S-r-(β-Oleyl-Glc))熱重量分析(Thermogravimetric analysis,TGA) 33 2.3.6. Poly (S-r-(β-Oleyl-Glc))微差掃描量熱法 (Differential Scanning Calorimetry,DSC) 34 2.3.7. Poly (S-r-(β-Oleyl-Glc)) 凝膠滲透層析儀(Gel permeation chromatography,GPC) 35 2.4. 含醣多硫共聚物電池測試 36 2.4.1. 含醣多硫共聚物的電池製備 36 2.4.2. Poly (S-r-(β-Oleyl-Glc))循環壽命測試(Cycle Life) 37 2.4.3. Poly (S-r-(β-Oleyl-Glc))定電流充放電(C-rate) 42 2.4.4. Poly (S-r-(β-Oleyl-Glc))之循環伏安法(Cyclic Voltammetry,CV) 47 2.4.5. Poly (S-r-(β-Oleyl-Glc))之交流阻抗(AC Impedance) 50 2.4.6. Poly (S-r-(β-Oleyl-Glc))掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 51 2.4.7. Poly (S-r-(β-Oleyl-Glc))能量色散X射線譜(Energy-dispersive X-ray spectroscopy, EDS) 54 2.4.8. Poly (S-r-(β-Oleyl-Glc))X-射線能譜儀 (Energy Dispersive x-ray, EDX) 56 2.5. 結論及未來展望 57 第三章 參考文獻 58 第四章 實驗步驟與光譜數據 62 4.1. 儀器設備與藥品材料 62 4.2. 合成步驟與數據 66 4.2.1. Allyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (化合物 2) 之合成 66 4.2.2. Poly(S50-r-(Allyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside)50)(化合物 3) 之合成 67 4.2.3. Allyl β-D-galactopyranoside (化合物 5) 之合成 68 4.2.4. Poly( S70-r-(Allyl β-D-galactopyranoside)30) (化合物 4) 之合成 69 4.2.5. (Z)-octadec-9-enyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (化合物6 ) 之合成 70 4.2.6. (cis-9'-octadecenyl)-β-D-glucopyranoside (化合物 7) 之合成 71 4.2.7. Poly (S-r-(β-Oleyl-Glc)) (化合物8 ) 之合成 72 第五章 光譜資料 73 5.1. 化合物 2 1H譜 (300 MHz, CDCl3) 74 5.2. 化合物 3 1H譜 (400 MHz, CDCl3) 75 5.3. 化合物 3 13C譜 (100 MHz, CDCl3) 76 5.4. 化合物 4 1H譜 (300 MHz, CD3OD) 77 5.5. 化合物 4 13C譜 (100 MHz, CD3OD) 78 5.6. 化合物 5 1H譜 (300 MHz, CD3OD) 79 5.7. 化合物 5 13C譜 (100 MHz, CD3OD) 80 5.8. 化合物 6 1H譜 (400 MHz, CDCl3) 81 5.9. 化合物 6 13C譜 (100 MHz, CDCl3) 82 5.10. 化合物 7 1H譜 (400 MHz, CD3OD) 83 5.11. 化合物 7 13C譜 (100 MHz, CD3OD) 84 5.12. 化合物 8 1H譜 (300 MHz, CD3OD) 85 5.13. 化合物 8 13C譜 (100 MHz, CD3OD) 86 |
參考文獻 References |
參考文獻 1. Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B., A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177, 512-527. 2. Max J. H.Worthington; Kucera, R. L.; Chalker, J. M., Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748-2761. 3. Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, D. L.; Anastas, P. T., The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929-1961. 4. Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y.-E.; Char, K.; Pyun, J., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem 2013, 5, 518. 5. Chalker, J. M.; Worthington, M. J. H.; Lundquist, N. A.; Esdaile, L. J., Synthesis and Applications of Polymers Made by Inverse Vulcanization. Top. Curr. Chem. 2019, 377, 16. 6. Wu, X.; Smith, J. A.; Petcher, S.; Zhang, B.; Parker, D. J.; Griffin, J. M.; Hasell, T., Catalytic inverse vulcanization. Nat. Commun. 2019, 10, 647. 7. Liu, Y.; Cui, C.; Liu, Y.; Liu, W.; Wei, J., Application of MoS2 in the cathode of lithium sulfur batteries. RSC Adv. 2020, 10, 7384-7395. 8. Griebel, J. J.; Nguyen, N. A.; Namnabat, S.; Anderson, L. E.; Glass, R. S.; Norwood, R. A.; Mackay, M. E.; Char, K.; Pyun, J., Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. ACS Macro Lett. 2015, 4, 862-866. 9. Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M., Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil. Angew.Chem. Int. Ed. 2016, 55, 1714-1718. 10. Worthington, M. J. H.; Kucera, R. L.; Albuquerque, I. S.; Gibson, C. T.; Sibley, A.; Slattery, A. D.; Campbell, J. A.; Alboaiji, S. F. K.; Muller, K. A.; Young, J.; Adamson, N.; Gascooke, J. R.; Jampaiah, D.; Sabri, Y. M.; Bhargava, S. K.; Ippolito, S. J.; Lewis, D. A.; Quinton, J. S.; Ellis, A. V.; Johs, A.; Bernardes, G. J. L.; Chalker, J. M., Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chem. Eur. J. 2017, 23, 16219-16230. 11. Herrera, C.; Ysinga, K. J.; Jenkins, C. L., Polysulfides Synthesized from Renewable Garlic Components and Repurposed Sulfur Form Environmentally Friendly Adhesives. ACS Appl. Mater. Interfaces 2019, 11, 35312-35318. 12. Liu, X.; Wang, S.; Wang, A.; Chen, J.; Wang, Z.; Zeng, Q.; Liu, W.; Li, Z.; Zhang, L., A New Conjugated Porous Polymer with Covalently Linked Polysulfide as Cathode Material for High-Rate Capacity and High Coulombic Efficiency Lithium–Sulfur Batteries. J. Phys. Chem. C 2019, 123, 21327-21335. 13. Dirlam, P. T.; Glass, R. S.; Char, K.; Pyun, J., The use of polymers in Li-S batteries: A review. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1635-1668. 14. Wang, J.; Yao, Z.; Monroe, C. W.; Yang, J.; Nuli, Y., Carbonyl-β-Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Adv. Funct. Mater. 2012, 23, 1194-1201. 15. Jeon, J.; Yoo, J.-K.; Yim, S.; Jeon, K.; Lee, G. H.; Yun, J. H.; Kim, D. K.; Jung, Y. S., Natural-Wood-Derived Lignosulfonate Ionomer as Multifunctional Binder for High-Performance Lithium–Sulfur Battery. ACS Sustainable Chem. Eng. 2019, 7, 17580-17586. 16. Li, Q.; Yang, H.; Xie, L.; Yang, J.; Nuli, Y.; Wang, J., Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem. Commun. 2016, 52, 13479-13482. 17. Ould Ely, T.; Kamzabek, D.; Chakraborty, D.; Doherty, M. F., Lithium–Sulfur Batteries: State of the Art and Future Directions. ACS Appl. Energy Mater. 2018, 1, 1783-1814. 18. Wang, L.; Wang, Y.; Xia, Y., A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy & Environmental Science 2015, 8, 1551-1558. 19. Cheon, S.-E.; Choi, S.-S.; Han, J.-S.; Choi, Y.-S.; Jung, B.-H.; Lim, H. S., Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode. J. Electrochem. Soc. 2004, 151, A2067. 20. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J., Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2012, 134, 18510-18513. 21. Park, S.; Lee, D.; Cho, H.; Lim, J.; Char, K., Inverse Vulcanization Polymers with Enhanced Thermal Properties via Divinylbenzene Homopolymerization-Assisted Cross-Linking. ACS Macro Lett. 2019, 8, 1670-1675. 22. Boyd, D. A.; Nguyen, V. Q.; McClain, C. C.; Kung, F. H.; Baker, C. C.; Myers, J. D.; Hunt, M. P.; Kim, W.; Sanghera, J. S., Optical Properties of a Sulfur-Rich Organically Modified Chalcogenide Polymer Synthesized via Inverse Vulcanization and Containing an Organometallic Comonomer. ACS Macro Lett. 2019, 8, 113-116. 23. Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y., Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A, 2014, 2, 9280-9286. 24. Dirlam, P. T.; Simmonds, A. G.; Kleine, T. S.; Nguyen, N. A.; Anderson, L. E.; Klever, A. O.; Florian, A.; Costanzo, P. J.; Theato, P.; Mackay, M. E.; Glass, R. S.; Char, K.; Pyun, J., Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Adv. 2015, 5, 24718-24722. 25. Arslan, M.; Kiskan, B.; Cengiz, E. C.; Demir-Cakan, R.; Yagci, Y., Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries. Eur. Polym. J. 2016, 80, 70-77. 26. Hoefling, A.; Lee, Y. J.; Theato, P., Sulfur-Based Polymer Composites from Vegetable Oils and Elemental Sulfur: A Sustainable Active Material for Li–S Batteries. Macromol. Chem. Phys. 2017, 218, 1600303. 27. Park, J.; Kim, E. T.; Kim, C.; Pyun, J.; Jang, H.-S.; Shin, J.; Choi, J. W.; Char, K.; Sung, Y.-E., The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Li-S Batteries. Adv. Energy Mater. 2017, 7, 1700074. 28. Zhang, Y.; Griebel, J. J.; Dirlam, P. T.; Nguyen, N. A.; Glass, R. S.; Mackay, M. E.; Char, K.; Pyun, J., Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 107-116. 29. Kang, H.; Kim, H.; Park, M. J., Sulfur-Rich Polymers with Functional Linkers for High-Capacity and Fast-Charging Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1802423. 30. Park, S.; Kim, S.-J.; Sung, Y.-E.; Char, K.; Son, J. G., Short-Chain Polyselenosulfide Copolymers as Cathode Materials for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 45785-45795. 31. Thielke, M. W.; Bultema, L. A.; Brauer, D. D.; Richter, B.; Fischer, M.; Theato, P., Rapid Mercury(II) Removal by Electrospun Sulfur Copolymers. Polymers 2016, 8, 266. 32. Akay, S.; Kayan, B.; Kalderis, D.; Arslan, M.; Yagci, Y.; Kiskan, B., Poly(benzoxazine-co-sulfur): An efficient sorbent for mercury removal from aqueous solution. J. Appl. Polym. Sci. 2017, 134, 45306. 33. Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M., Porous inverse vulcanised polymers for mercury capture. Chem. Commun. 2016, 52, 5383-5386. 34. Lin, H.-K.; Lai, Y.-S.; Liu, Y.-L., Cross-Linkable and Self-Foaming Polysulfide Materials for Repairable and Mercury Capture Applications. ACS Sustainable Chem. Eng. 2019, 7, 4515-4522. 35. Arslan, M.; Kiskan, B.; Yagci, Y., Recycling and Self-Healing of Polybenzoxazines with Dynamic Sulfide Linkages. Sci.Rep 2017, 7, 5207-5207. 36. Lundquist, N. A.; Worthington, M. J. H.; Adamson, N.; Gibson, C. T.; Johnston, M. R.; Ellis, A. V.; Chalker, J. M., Polysulfides made from re-purposed waste are sustainable materials for removing iron from water. RSC Adv. 2018, 8, 1232-1236. 37. Deng, Z.; Hoefling, A.; Théato, P.; Lienkamp, K., Surface Properties and Antimicrobial Activity of Poly(sulfur-co-1,3-diisopropenylbenzene) Copolymers. Macromol. Chem. Phys. 2018, 219, 1700497. 38. Liu, P.; Gardner, J. M.; Kloo, L., Solution processable, cross-linked sulfur polymers as solid electrolytes in dye-sensitized solar cells. Chem. Commun. 2015, 51, 14660-14662. 39. Zhuo, S.; Huang, Y.; Liu, C.; Wang, H.; Zhang, B., Sulfur copolymer nanowires with enhanced visible-light photoresponse. Chem. Commun. 2014, 50, 11208-11210. 40. Hojo, M.; Sawyer, D. T., Hydroxide-induced reduction of elemental sulfur (S8) to trisulfur anion radical (S3.bul.-). Inorg. Chem. 1989, 28, 1201-1202. 41. Bhargav, A.; Bell, M. E.; Cui, Y.; Fu, Y., Polyphenylene Tetrasulfide as an Inherently Flexible Cathode Material for Rechargeable Lithium Batteries. ACS Appl. Energy Mater. 2018, 1, 5859-5864. 42. Lin, Y. A.; Chalker, J. M.; Davis, B. G., Olefin Cross-Metathesis on Proteins: Investigation of Allylic Chalcogen Effects and Guiding Principles in Metathesis Partner Selection. J. Am. Chem. Soc. 2010, 132, 16805-16811. 43. Chaugule, A. A.; Jadhav, A. R.; Kim, H., Polyvinyl trisulfonate ethylamine based solid acid catalyst for the efficient glycosylation of sugars under solvent free conditions. RSC Adv. 2015, 5, 104715-104724. 44. Milkereit, G.; Morr, M.; Thiem, J.; Vill, V., Thermotropic and lyotropic properties of long chain alkyl glycopyranosides: Part III: pH-sensitive headgroups. Chem. Phys. Lipids 2004, 127, 47-63. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |