論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
類浮動閘極記憶體控制振盪器之設計與實現 Design and Implementation of a Quasi Floating-Gate Memory Controlled Oscillator |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
65 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2018-07-23 |
繳交日期 Date of Submission |
2018-07-28 |
關鍵字 Keywords |
特殊應用晶片、可調變式頻率、時脈產生器、振盪器、類浮動閘極記憶體 quasi floating gate memory, clock generator, adjustable frequency, application-specific integrated circuit, oscillator |
||
統計 Statistics |
本論文已被瀏覽 5698 次,被下載 0 次 The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times. |
中文摘要 |
本篇論文呈現了以類浮動閘極記憶體做為參考電壓產生器和弛緩振盪器組合而成的可調變頻率之時脈產生器並且利用台積電0.35 μm 製程技術實現於晶片上。雖類浮動閘極記憶體的效果不能與標準浮閘記憶體相比,但能以相當低的成本做出相仿的記憶行為。本研究專注於利用類浮動閘極能夠在無須提供電源的情況下儲存資料的特性,使其能夠對振盪器的頻率做調變甚至在切斷電源並在一個小時內重新接回後能保持相同的頻率。因類浮動閘極所產生的參考電壓有範圍限制,故整個時脈產生器提供的頻率範圍介於462 KHz到549 KHz。在類浮動閘極記憶體進行編程的情況下,測得的功耗為5.1 mW並且振盪頻率對電壓源的變化百分比為±1.2%。晶片核心的面積約為0.069 mm2。 |
Abstract |
This thesis realizes an application-specific integrated circuit (ASIC) implementation of adjustable frequency clock generator which combination of a one-bit quasi floating gate memory as reference voltage generator for the relaxation oscillator with frequency divider at the output stage in TSMC 2P4M 0.35 μm CMOS technology. Quasi floating gate memory can make similar memory behavior with standard cell at a relatively low cost but the effect is compromised. Using the feature which store the data without the power of the quasi floating gate memory, the system can program an oscillator frequency by quasi floating gate memory which keeps the program state even without power but only for an hour. The clock generator can provide oscillating frequency between 462 KHz to 549 KHz. The measured power consumption is 5.1 mW during the quasi floating gate memory operates in program state and the oscillating frequency variation with VDD is about ±1.2%. The chip active area is about 0.069 mm2. |
目次 Table of Contents |
摘要 ii Abstract iii Contents iv List of Figures v List of Tables ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Contribution 2 1.3 Thesis organization 2 Chapter 2 System Design 3 2.1 Clock generator specification 3 2.2 System design 4 2.2.1 Quasi floating gate memory operational modes 4 2.3 Relaxation Oscillator working principle 6 2.4 Clock generator 9 Chapter 3 Circuit Design 13 3.1 Reference voltage generator design 13 3.1.1 Floating gate memory 15 3.2 Comparator circuit design 19 3.3 S-R latch circuit design 22 3.4 Delay circuit design 23 3.5 D-type flip-flop frequency divider circuit design 26 3.6 Circuit Layout 28 Chapter 4 Measurement Result 30 4.1 ASIC in D35 technology 30 4.2 Measurement of reference voltage generator 32 4.3 Measurement of frequency divider and clock generator 37 4.4 Comparison 46 Chapter 5 Conclusions and Future Work 48 5.1 Conclusions 48 5.2 Future work 49 References 50 Plagiarism Detection 53 |
參考文獻 References |
[1] S. Jeong, I.Lee, D. Blaauw, and Dennis Sylveter, “A 5.8nW CMOS wakeup timer for ultra-low-power wireless applications,” IEEE J.Solid-State Circuits, vol. 50, no. 8, pp. 1754-1763, Aug. 2015. [2] K. Tsubaki, T. Hirose, Y. Osaki, S. Shiga, N. Kuroki, and M. Numa, “A 6.66-kHz, 940-nW, 56ppm/C Fully On-chip PVT Variation Tolerant CMOS Relaxation Oscillator,” 9th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 97-100, 2012. [3] R. Rieger, “Variable-Gain, Low-Noise Amplification for Sampling Front Ends,” IEEE Trans. Biomedical Circuits and Systems., vol. 5, no. 3, pp. 253-261, June 2011. [4] S. M. Sze, “Physics of Semiconductor Devices”, Wiley & Sons Inc., 1981. [5] R. F. Pierret, “Semiconductor Device Fundamentals”, Addison Wesley, 1996. [6] P. Pavan, R. Bez, P. Olivo, E. Zanoni, “Flash Memory Cells—An Overview”, Proceedings of the IEEE, Vol. 85, PP. 1248-1271, 1997. [7] U. Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973–1982, Aug. 2010. [8] S. L. J. Gierkink and E. van Tuij, “A coupled sawtooth oscillator combining low jitter with high control linearity”, IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 702–710, Jun. 2002. [9] P. Pavan, L.Larcher, and A. Marmiroli, “Floating Gate Devices: Operation and Compact Modeling”, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow. [10] Steven Joseph Rapp, “A Comprehensive Simulation Model for Floating Gate Transistors”. [11] M. Suhail, T. Harp, J. Bridwell, and P. J. Kuhn, “Effects of Fowler Nordheim tunneling stress vs. channel hot electron stress on data retention characteristics of floating gate nonvolatile memories,” in Proc. 40th Annu. Int. Reliability Physics Symp., 2002, pp. 439–440. [12] Soclof, Sidney (1985). Analog integrated circuits. Englewood Cliffs, New Jersey: Prentice Hall. [13] G. Levy, A. Piovaccari, “A CMOS Low Power, High Speed Asynchronous Comparator for Synchronous Rectification Applications”, ISCAS 2000-IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland. [14] Mano, M., “Digital Design”, Prentice/Hall, 1984. Chapter 6. [15] A. Musa, T. Minotani, T. Kondo and H. Morimura, “A Wide Frequency PLL-less Clock Generator with Fast Intermittent Operation for Low-Power Wearable Medical Applications,” in 2015 21st Asia-Pacific Conference on Communications (APCC), Oct 2015, pp. 662–665. [16] Y. Satoh, H. Kobayashi, T. Miyaba, and S. Kousai, “A 2.9mw, ±85ppm accuracy reference clock generator based on rc oscillator with on-chip temperature calibration,” in VLSI Circuits Digest of Technical Papers, 2014 Symposium on, June 2014, pp. 1–2. [17] M. McCorquodale, S. Pernia, J. O’Day, G. Carichner, E. Marsman, N. Nguyen, S. Kubba, S. Nguyen, J. Kuhn, and R. Brown, “A 0.5-to480mhz self-referenced cmos clock generator with 90ppm total frequency error and spread-spectrum capability,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, Feb 2008, pp. 350–619. [18] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip cmos relaxation oscillator with voltage averaging feedback,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 6, pp. 1150–1158, June 2010. [19] Y. Cao, P. Leroux, W. De Cock, and M. Steyaert, “A 63,000 q-factor relaxation oscillator with switched-capacitor integrated error feedback,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, Feb 2013, pp. 186–187. [20] K. Choe, O. Bernal, D. Nuttman, and M. Je, “A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical socs,” in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, Feb 2009, pp. 402– 403,403a. [21] Paul Hasler, “Floating-Gate Devices, Circuits, and Systems,” Georgia Institute of Technology, Atlanta, IEEE, System-on-Chip for Real-Time Applications, 2005, pp. 482-487 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |