論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-07-27
校外 Off-campus:開放下載的時間 available 2026-07-27
論文名稱 Title |
氧電漿處理對聚矽氮烷液態高分子陶瓷前驅物和聚醯亞胺薄膜表面性能與黏著力之影響 Influence of surface properties and adhesion on polysilazane preceramic precursor and Polyimide film with oxygen plasma treatment |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
90 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-09 |
繳交日期 Date of Submission |
2024-07-27 |
關鍵字 Keywords |
聚矽氮烷液態高分子陶瓷前驅物、聚合物衍生性陶瓷、聚醯亞胺薄膜、氧電漿處理、黏著力、粗糙度、表面能 Polysilazane liquid polymer ceramic precursor, polymer-derived ceramics (PDCs), oxygen plasma treatment, surface energy, adhesion, roughness, polyimide films |
||
統計 Statistics |
本論文已被瀏覽 79 次,被下載 0 次 The thesis/dissertation has been browsed 79 times, has been downloaded 0 times. |
中文摘要 |
聚矽氮烷液態高分子陶瓷前驅物(Polysilazane preceramic precursor)在經過熱解後會形成固態的聚合物衍生性陶瓷(Polymer derived ceramic,PDC),PDC聚有許多優異的性質,且對於任何材料的附著力皆佳,又因其前驅物為液態相,有利於各種沉積形成鍍膜,有機會替代聚醯亞胺在半導體封裝中做為介電層。 本文探討了透過旋塗技術將聚矽氮烷液態高分子陶瓷前驅物(PSZ)與聚醯亞胺(PI)沉積在矽晶圓上,並通過不同溫度進行熱固化交聯(分別為200°C、250°C、300°C)、氧電漿處理時間和陶瓷前驅物濃度對薄膜表面能、粗糙度及黏著力特性的影響。結果顯示,PSZ與PI的接觸角隨固化溫度上升而增加,且經氧電漿處理後水接觸角顯著降低,表明氧電漿引入了極性基團,提高了表面能。稀釋的PSZ在固化後隨濃度降低,有接觸角提高、表面能及黏著力降低的趨勢。氧電漿處理時間增加會進一步降低二碘甲烷接觸角,增加表面能。 AFM分析顯示,PI的粗糙度隨溫度增加而上升,而PSZ在250°C時粗糙度最高,但兩者粗糙度皆隨電漿處理時間增加而增加。膠帶剝離試驗表明,未經電漿處理的PSZ和PI在200°C時黏著力最佳,並隨著溫度上升而黏著力降低,且PSZ在相同溫度下的最佳黏著力皆優於PI。不同厚度的PSZ薄膜黏著力隨厚度增加而增大。另外,通過表面能和粗糙度的量測結果與黏著力的比較,發現表面能、粗糙度與黏著力之間的關係不直觀,表面能和粗糙度皆隨電漿處理時間增加而提高,但黏著力不一定符合此趨勢,需綜合考慮薄膜厚度、固化溫度及電漿處理等因素以選擇最佳製程。 |
Abstract |
Polysilazane liquid polymer ceramic precursor, upon pyrolysis, forms solid polymer-derived ceramics (PDCs), which possess many excellent properties, including good adhesion to various materials. Due to its liquid-phase precursor, it facilitates diverse deposition methods for film formation and has the potential to replace PI as a dielectric layer in semiconductor packaging. This study investigates the deposition of liquid-phase polysilazane preceramic precursor and polyimide onto silicon wafers via spin coating. The effects of different curing temperatures (200°C, 250°C, 300°C), oxygen plasma treatment durations, and ceramic precursor concentrations on the surface energy, roughness, and adhesion properties of the films were analyzed. The results show that the contact angles of PSZ and PI increased with curing temperature. However, the water contact angles significantly decreased after oxygen plasma treatment, indicating that oxygen plasma introduced polar functional groups, thus enhancing surface energy. Diluted PSZ, after curing, showed a trend of increased contact angles and decreased surface energy and adhesion with reduced concentration. Extended oxygen plasma treatment further reduced the diiodomethane contact angle and increased surface energy. AFM analysis revealed that the roughness of PI increased with temperature, while PSZ exhibited the highest roughness at 250°C. The roughness of both materials increased with the duration of plasma treatment. The tape peel test indicated that the adhesion of untreated PSZ and PI was optimal at 200°C and decreased with higher temperatures. Thicker PSZ films showed increased adhesion. Additionally, comparing surface energy and roughness measurements with adhesion results revealed a non-intuitive relationship: surface energy and roughness increased with plasma treatment time, but adhesion did not necessarily follow this trend. Thus, film thickness, curing temperature, and plasma treatment must be considered comprehensively to select the optimal process. |
目次 Table of Contents |
論文審定書 i 摘要 ii ABSTRACT iii 目錄 v 圖次 viii 表次 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 聚合物衍生性陶瓷(Polymer derived ceramic, PDC) 3 2.1.1 聚合物衍生性陶瓷(PDC)的合成 4 2.1.2 聚合物衍生性陶瓷(PDC)的轉化 6 2.1.3 聚合物衍生性陶瓷(PDC)的沉積 8 2.1.4 聚矽氮烷(Polysilazane, PSZ) 11 2.2 聚醯亞胺(Polyimide) 13 2.2.1 聚醯亞胺在微電子業和半導體業的應用 14 2.3 高分子材料與金屬間的黏附力 15 2.3.1 不同薄膜厚度和不同金屬與黏附性之關係 15 2.3.2 塗層沉積方式與黏附性之關係 16 2.3.3 熱處理與黏附性之關係 16 2.3.4 表面改質 17 第三章 實驗用品 18 3.1 實驗用品 18 3.2 實驗設備 19 3.3 實驗流程與方法 21 3.3.1 準備聚醯亞胺與調配聚矽氮烷液態高分子前驅物溶液 22 3.3.2 聚醯亞胺與聚矽氮烷液態高分子前驅物旋轉塗佈 22 3.3.3 熱處理 25 3.3.4 電漿處理 27 3.3.5 濺鍍鈦銅 28 3.4 分析設備與方法 30 3.4.1 接觸角量測儀 30 3.4.2 接觸角定義 31 3.4.3 多功能原子力顯微鏡(atomic force microscope,AFM) 35 3.4.4 黏著力測試 37 第四章 結果與討論 39 4.1 聚醯亞胺(PI)與聚矽氮烷(PSZ)薄膜之表面能分析 39 4.1.1 固化溫度與電漿處理前後之接觸角比較 39 4.1.2 稀釋PSZ之接觸角與表面能 41 4.1.3 電漿處理時間對於水接觸角(Water contact angle WCA) 43 4.1.4 二碘甲烷接觸角(Diiodomethane contact angle DCA) 45 4.1.5 電漿處理時間對於表面能之關係 47 4.2 聚醯亞胺(PI)與聚矽氮烷(PSZ)薄膜之表面粗糙度分析 50 4.2.1 固化溫度與電漿處理對於粗糙度之影響 50 4.2.2 電漿處理時間對於粗糙度之關係 52 4.3 聚醯亞胺(PI)與聚矽氮烷(PSZ)薄膜和金屬間黏著力分析 55 4.3.1 PSZ與PI之黏著力比較 55 4.3.2 不同厚度之PSZ薄膜黏著力 63 4.3.3 稀釋PSZ之黏著力 65 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 69 參考文獻 70 |
參考文獻 References |
[1] F. W. Ainger, Herbert, J.M., "The Preparation of Phosphorus–Nitrogen Compounds as Non–Porous Solids; Academic Press: New York, NY, USA, ; ," pp. 168–182, 1960. [2] P. G. P. Chantrell, P., " Inorganic Polymers and Ceramic; Academic Press: New York, NY, USA," pp. 87–103, 1960. [3] W. verbeek, "Production of Shaped Articles of Homogeneous Mixtures of Silicon Carbide and Nitride. U.S. ," vol. Patent 3853567, 8 November 1973. [4] J. He, M. Song, K. Chen, D. Kan, and M. Zhu, "Polymer-Derived Ceramics Technology: Characteristics, Procedure, Product Structures, and Properties, and Development of the Technology in High-Entropy Ceramics," Crystals, vol. 12, no. 9, p. 1292, 2022. [Online]. Available: https://www.mdpi.com/2073-4352/12/9/1292. [5] R. Riedel, G. Passing, H. Schönfelder, and R. J. Brook, "Synthesis of dense silicon-based ceramics at low temperatures," Nature, vol. 355, no. 6362, pp. 714-717, 1992/02/01 1992, doi: 10.1038/355714a0. [6] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, and T. Nagasawa, "High-strength alkali-resistant sintered SiC fibre stable to 2,200 °C," Nature, vol. 391, no. 6669, pp. 773-775, 1998/02/01 1998, doi: 10.1038/35820. [7] A. Viard et al., "Polymer Derived Si–B–C–N Ceramics: 30 Years of Research," Advanced Engineering Materials, vol. 20, no. 10, p. 1800360, 2018, doi: https://doi.org/10.1002/adem.201800360. [8] Y. Wang, ""Polymer-derived Si-al-c-n Ceramics:oxidation, Hot-corrosion, And Structural Evolution" " Electronic Theses and Dissertations., vol. 762., (2006). . [Online]. Available: https://stars.library.ucf.edu/etd/762. [9] Y. Wang, W. Fei, and L. An, "Oxidation/Corrosion of Polymer-Derived SiAlCN Ceramics in Water Vapor," Journal of the American Ceramic Society, vol. 89, no. 3, pp. 1079-1082, 2006, doi: https://doi.org/10.1111/j.1551-2916.2005.00791.x. [10] K. Wang, Ph.D, University of Washington, "Polymer Derived Ceramic and Ceramic Matrix Composite Coatings: Processing, Characterization and Performance," vol. 3431632, 2010. [11] P. Colombo, G. Mera, R. Riedel, and G. D. Sorarù, "Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics," Journal of the American Ceramic Society, vol. 93, no. 7, pp. 1805-1837, 2010, doi: https://doi.org/10.1111/j.1551-2916.2010.03876.x. [12] E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, "Silazane derived ceramics and related materials," Materials Science and Engineering: R: Reports, vol. 26, no. 4, pp. 97-199, 2000/04/03/ 2000, doi: https://doi.org/10.1016/S0927-796X(00)00008-5. [13] "Polymer_derived_ceramics." https://en.wikipedia.org/wiki/Polymer_derived_ceramics (accessed. [14] 鄭亦軒, "低溫交聯「聚矽氮烷液態高分子陶瓷前驅物」橋接氟以形成低表面能薄膜於抗腐蝕與抗污之應用.," 2022. [15] H. L. Æ. L. Z. Æ. L. C. Æ. Z. Y. Æ. M. H. Æ. H. T. Æ. H. Xia, "Effect of curing and pyrolysis processing on the ceramic yield of a highly branched polycarbosilane," 31 December 2008, doi: 10.1007/s10853-008-3176-y. [16] B. J. Ackley et al., "Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics," Chemical Reviews, vol. 123, no. 8, pp. 4188-4236, 2023/04/26 2023, doi: 10.1021/acs.chemrev.2c00381. [17] F. Sarraf, A. Hadian, F. Gfeller, S. V. Churakov, and F. Clemens, "Crosslinking and pyrolysis of a methyl-silsesquioxane: Effect of heating rate on fabrication of polymer derived mullite ceramics using thermoplastic shaping," Materials & Design, vol. 237, p. 112578, 2024/01/01/ 2024, doi: https://doi.org/10.1016/j.matdes.2023.112578. [18] P. Shanmugam, S. Krishnan, D. Devapal, and B. Swaminathan, "Polymer-Derived Ceramics and Their Space Applications," 2020. [19] C. J. Brinker, "Dip Coating," in Chemical Solution Deposition of Functional Oxide Thin Films, T. Schneller, R. Waser, M. Kosec, and D. Payne Eds. Vienna: Springer Vienna, 2013, pp. 233-261. [20] L. E. Scriven, "Physics and Applications of DIP Coating and Spin Coating," MRS Online Proceedings Library, vol. 121, no. 1, pp. 717-729, 1988/12/01 1988, doi: 10.1557/PROC-121-717. [21] "The Dip Coating Procedure." https://www.dipmoldedplastics.com/dip-coating/ (accessed. [22] S. Nandy and K. H. Chae, "17 - Chemical synthesis of ferrite thin films," in Ferrite Nanostructured Magnetic Materials, J. Pal Singh, K. H. Chae, R. C. Srivastava, and O. F. Caltun Eds.: Woodhead Publishing, 2023, pp. 309-334. [23] A. Mishra, N. Bhatt, and A. K. Bajpai, "Chapter 12 - Nanostructured superhydrophobic coatings for solar panel applications," in Nanomaterials-Based Coatings, P. Nguyen Tri, S. Rtimi, and C. M. Ouellet Plamondon Eds.: Elsevier, 2019, pp. 397-424. [24] B. S. Yilbas, A. Al-Sharafi, and H. Ali, "Chapter 3 - Surfaces for Self-Cleaning," in Self-Cleaning of Surfaces and Water Droplet Mobility, B. S. Yilbas, A. Al-Sharafi, and H. Ali Eds.: Elsevier, 2019, pp. 45-98. [25] R. Das and A. Chanda, "Fabrication and Properties of Spin-Coated Polymer Films," 2016, pp. 283-306. [26] D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. A. Fuierer, and R. Moos, "An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications," 2015. [27] C.-J. Li, X.-T. Luo, S.-W. Yao, G.-R. Li, C.-X. Li, and G.-J. Yang, "The Bonding Formation during Thermal Spraying of Ceramic Coatings: A Review," Journal of Thermal Spray Technology, vol. 31, no. 4, pp. 780-817, 2022/04/01 2022, doi: 10.1007/s11666-022-01379-z. [28] M. Patel, H. Baishya, R. Gupta, R. Garai, and P. Iyer, "Thin Film Solution Processable Perovskite Solar Cell," 2022. [29] R. Sønderbæk-Jørgensen, "Polysilazanes for Coating Applications," 2022. [30] R. A. Silberglitt, I.; Tian, Y. L., "Microwave joining of SiC," OSTI.GOV, 1997, doi: https://doi.org/10.2172/494132. [31] A. Lukacs III, "Polysilazane precursors to advanced ceramics," American Ceramic Society Bulletin, vol. 86, no. 1, 2006. [32] "Clayton, R., Bearinger., Robert, Charles, Camilletti., Grish, Chandra., Theresa, Eileen, Gentle., Loren, Andrew, Haluska. (1996). Use of preceramic polymers as electronic adhesives. ." [33] Y. Zhan, R. Grottenmüller, W. Li, F. Javaid, and R. Riedel, "Evaluation of mechanical properties and hydrophobicity of room‐temperature, moisture‐curable polysilazane coatings," Journal of Applied Polymer Science, vol. 138, no. 21, 2021, doi: 10.1002/app.50469. [34] I. Gouzman, E. Grossman, R. Verker, N. Atar, A. Bolker, and N. Eliaz, "Advances in Polyimide‐Based Materials for Space Applications," Advanced Materials, vol. 31, no. 18, 2019, doi: 10.1002/adma.201807738. [35] P. Rosenauer, C. Kratzer, S. Larisegger, and S. Radl, "Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides," Polymers, vol. 16, no. 6, 2024, doi: 10.3390/polym16060813. [36] D. Soane and Z. Martynenko, "Polymers in Electronics: Fundamentals and Applications," ed: Elsevier, Amsterdam, 1989. [37] M. M. D. Ramos, "Theoretical study of metal–polyimide interfacial properties," Vacuum, vol. 64, no. 3, pp. 255-260, 2002/01/01/ 2002, doi: https://doi.org/10.1016/S0042-207X(01)00332-3. [38] " Fan-Out Wafer-Level Packaging." https://www.eet-china.com/mp/a79407.html (accessed. [39] D.-C. Hu and H.-C. Chen, "Temperature and humidity effects on adhesion of polyimide film to a silicon substrate," Journal of Adhesion Science and Technology, vol. 6, no. 5, pp. 527-536, 1992/01/01 1992, doi: 10.1163/156856192X00377. [40] P. S. Ho, "Chemistry and adhesion of metal-polymer interfaces," Applied Surface Science, vol. 41-42, pp. 559-566, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0169-4332(89)90122-0. [41] S. W. Russell et al., "Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions," Thin Solid Films, vol. 262, no. 1, pp. 154-167, 1995/06/15/ 1995, doi: https://doi.org/10.1016/0040-6090(94)05812-1. [42] M. D. Kriese, N. R. Moody, and W. W. Gerberich, "Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates," Acta Materialia, vol. 46, no. 18, pp. 6623-6630, 1998/11/01/ 1998, doi: https://doi.org/10.1016/S1359-6454(98)00277-8. [43] J. B. You, S. Y. Kim, Y. J. Park, Y. G. Ko, and S. G. Im, "A Vapor-Phase Deposited Polymer Film to Improve the Adhesion of Electroless-Deposited Copper Layer onto Various Kinds of Substrates," Langmuir, vol. 30, no. 3, pp. 916-921, 2014/01/28 2014, doi: 10.1021/la404251h. [44] J. J. Kim, S.-K. Kim, C. H. Lee, and Y. S. Kim, "Investigation of various copper seed layers for copper electrodeposition applicable to ultralarge-scale integration interconnection," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, no. 1, pp. 33-38, 2002, doi: 10.1116/1.1529654. [45] B.-I. Noh, J.-W. Yoon, B.-Y. Lee, and S.-B. Jung, "Effects of different kinds of seed layers and heat treatment on adhesion characteristics of Cu/(Cr or Ni–Cr)/PI interfaces in flexible printed circuits," Journal of Materials Science: Materials in Electronics, vol. 22, no. 7, pp. 790-796, 2011/07/01 2011, doi: 10.1007/s10854-010-0213-9. [46] S. K. Nemani et al., "Surface Modification of Polymers: Methods and Applications," Advanced Materials Interfaces, vol. 5, no. 24, p. 1801247, 2018, doi: https://doi.org/10.1002/admi.201801247. [47] S. H. Kim, S. H. Cho, N. E. Lee, H. M. Kim, Y. W. Nam, and Y.-H. Kim, "Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma," Surface and Coatings Technology, vol. 193, no. 1-3, pp. 101-106, 2005, doi: 10.1016/j.surfcoat.2004.08.130. [48] C. Aktas, V. Bhethanabotla, R. S. Ayyala, and N. Sahiner, "Modifying wetting properties of PI Film: The impact of surface texturing and CF4 and O2 plasma treatment," Applied Surface Science, vol. 656, 2024, doi: 10.1016/j.apsusc.2024.159729. [49] M. L. G. RAMARATHNAM , M . M . SADOWSKI AN D T. H. NORT H, "Joining of Polymers to Metal," December 1991 [50] J. Friedrich, "High-Performance Metal–Polymer Composites: Chemical Bonding, Adhesion, and Interface Design," 13 November 2017, doi: 10.1002/9783527679898. [51] D. L. Pappas, J. J. Cuomo, and K. G. Sachdev, "Studies of adhesion of metal films to polyimide," Journal of Vacuum Science & Technology A, vol. 9, no. 5, pp. 2704-2708, 1991, doi: 10.1116/1.577228. [52] "<resists.HD-4100_ProcessGuide.pdf>." [53] "<TDS Durazane® 1500 Rapid Cure.pdf>." [54] "3D IC TSV製程技術簡介." https://www.materialsnet.com.tw/DocView.aspx?id=22798 (accessed. [55] G. U. o. B. Barroso, Ceramic Materials Engineering, Q. C. U. Li, Department of Materials Science and, Engineering, R. C. U. Bordia, Department of Materials Science, a. Engineering, and G. U. o. B. Motz, Ceramic Materials Engineering, "Journal of Materials Chemistry A," Review Article 21-Nov 2018. [56] C. T. Pan et al., "Adhesion–delamination phenomena at the interfaces of the dielectric layer," Results in Physics, vol. 18, 2020, doi: 10.1016/j.rinp.2020.103249. [57] W Ombati Nyang’au1, G Hamdana1, A Setiono1,3, M Bertke1, J Xu1, M Fahrbach1, P Puranto1,3,4, H S Wasisto1 and E Peiner1, "Adsorption and detection of microparticles using silicon microcantilevers," Journal of Physics: Conference Series, 2019. [58] G. Kumar and K. N. Prabhu, "Review of non-reactive and reactive wetting of liquids on surfaces," Adv Colloid Interface Sci, vol. 133, no. 2, pp. 61-89, Jun 30 2007, doi: 10.1016/j.cis.2007.04.009. [59] S. Laurén, "Wenzel equation – How roughness is related to wettability?," in Surface Science Blog, ed, 2020. [60] "R.W.Wenzel, “Resistance of solid surfaces to wetting by water”, Industrial & Engineering Chemistry 28 (1936) 988." [61] S. YE, "SURFACE ENGINEERING OF POLYMERIC SUBSTRATES USING PLASMA TECHNIQUE AND APPLICATIONS," SCHOOL OF MATERIALS SCIENCE AND ENGINEERING, 2022. [62] N. Encinas, M. Pantoja, J. Abenojar, and M. A. Martínez, "Control of Wettability of Polymers by Surface Roughness Modification," Journal of Adhesion Science and Technology, vol. 24, no. 11-12, pp. 1869-1883, 2010, doi: 10.1163/016942410x511042. [63] C. Shi, A. Y. Heble, and S. Zhang, "Multiparametric AFM insights into electron transport mechanisms in biomemristors," Materials Today Physics, vol. 44, 2024, doi: 10.1016/j.mtphys.2024.101429. [64] H. Zhang et al., "Atomic force microscopy for two-dimensional materials: A tutorial review," Optics Communications, vol. 406, pp. 3-17, 2018, doi: 10.1016/j.optcom.2017.05.015. [65] R. Garcı́a and R. Pérez, "Dynamic atomic force microscopy methods," Surface Science Reports, vol. 47, no. 6, pp. 197-301, 2002/09/01/ 2002, doi: https://doi.org/10.1016/S0167-5729(02)00077-8. [66] W. Xiang, Y. Tian, and X. Liu, "Dynamic analysis of tapping mode atomic force microscope (AFM) for critical dimension measurement," Precision Engineering, vol. 64, pp. 269-279, 2020, doi: 10.1016/j.precisioneng.2020.03.023. [67] N. Jalili and K. Laxminarayana, "A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences," Mechatronics, vol. 14, no. 8, pp. 907-945, 2004, doi: 10.1016/j.mechatronics.2004.04.005. [68] J. Sung and H. So, "3D printing-assisted fabrication of microgrid patterns for flexible antiadhesive polymer surfaces," Surfaces and Interfaces, vol. 23, p. 100935, 2021/04/01/ 2021, doi: https://doi.org/10.1016/j.surfin.2021.100935. [69] X. Li, R. Tao, Y. Xin, and G. Lubineau, "Cassette-like peeling system for testing the adhesion of soft-to-rigid assemblies," International Journal of Solids and Structures, vol. 251, p. 111751, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.ijsolstr.2022.111751. [70] M. D. Bartlett, S. W. Case, A. J. Kinloch, and D. A. Dillard, "Peel tests for quantifying adhesion and toughness: A review," Progress in Materials Science, vol. 137, p. 101086, 2023/08/01/ 2023, doi: https://doi.org/10.1016/j.pmatsci.2023.101086. [71] "Peel testing: an overview about Material Adhesion Strength." [Online]. Available: https://biopdi.com/peel-testing/. [72] T. Xometry. "Peel Tester: How Does It Work, How To Test, and Technical Requirements." https://www.xometry.com/resources/materials/peel-tester/ (accessed. [73] M. Zuo, T. Takeichi, A. Matsumoto, and K. Tsutsumi, "Surface characterization of polyimide films," Colloid and Polymer Science, vol. 276, no. 7, pp. 555-564, 1998/08/01 1998, doi: 10.1007/s003960050281. [74] M. Cen-Puc, A. Schander, M. G. Vargas Gleason, and W. Lang, "An Assessment of Surface Treatments for Adhesion of Polyimide Thin Films," Polymers, vol. 13, no. 12, p. 1955, 2021. [Online]. Available: https://www.mdpi.com/2073-4360/13/12/1955. [75] Y.-S. Lin, H.-M. Liu, and H.-T. Chen, "Surface modification of polyimide films by argon plasma for copper metallization on microelectronic flex substrates," Journal of Applied Polymer Science, vol. 99, no. 3, pp. 744-755, 2006/02/05 2006, doi: https://doi.org/10.1002/app.22545. [76] M. Lehocký et al., "Plasma surface modification of polyethylene," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 222, no. 1, pp. 125-131, 2003/07/30/ 2003, doi: https://doi.org/10.1016/S0927-7757(03)00242-5. [77] S.-G. Lee, T.-J. Kang, and T.-H. Yoon, "Enhanced interfacial adhesion of ultra-high molecular weight polyethylene (UHMWPE) fibers by oxygen plasma treatment," Journal of Adhesion Science and Technology, vol. 12, no. 7, pp. 731-748, 1998/01/01 1998, doi: 10.1163/156856198X00263. [78] W. Chen, W. Chen, B. Zhang, S. Yang, and C.-Y. Liu, "Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization," Polymer, vol. 109, pp. 205-215, 2017/01/27/ 2017, doi: https://doi.org/10.1016/j.polymer.2016.12.037. [79] M. Li, Q. H. Lu, J. Yin, Y. Qian, and Z. G. Wang, "Effects of post-thermal treatment on preparation of surface microstructures induced by polarized laser on polyimide film," Materials Chemistry and Physics, vol. 77, no. 3, pp. 895-898, 2003/01/30/ 2003, doi: https://doi.org/10.1016/S0254-0584(02)00171-2. [80] J. H. Cho, D. I. Kong, C. E. Park, and M. Y. Jin, "Effect of curing temperature on the adhesion strength of polyamideimide/copper joints," Journal of Adhesion Science and Technology, vol. 12, no. 5, pp. 507-521, 1998/01/01 1998, doi: 10.1163/156856198X00191. [81] E. M. Liston, L. Martinu, and M. R. Wertheimer, "Plasma surface modification of polymers for improved adhesion: a critical review," Journal of Adhesion Science and Technology, vol. 7, no. 10, pp. 1091-1127, 1993/01/01 1993, doi: 10.1163/156856193X00600. [82] N. Inagaki, S. Tasaka, and K. Hibi, "Improved adhesion between plasma-treated polyimide film and evaporated copper," Journal of Adhesion Science and Technology, vol. 8, no. 4, pp. 395-410, 1994/01/01 1994, doi: 10.1163/156856194X00302. [83] J. H. Wang, P. T. Liu, T. S. Chang, T. C. Chang, and L. J. Chen, "Structural characteristics and interfacial reactions of low dielectric constant porous polysilazane for Cu metallization," Thin Solid Films, vol. 469-470, pp. 393-397, 2004/12/22/ 2004, doi: https://doi.org/10.1016/j.tsf.2004.09.014. [84] Y. Luo et al., "Superior interface adhesion and protective mechanism of room-temperature-curable polymer composite coating on engineering substrates with lower roughness," Polymer Testing, vol. 134, p. 108430, 2024/05/01/ 2024, doi: https://doi.org/10.1016/j.polymertesting.2024.108430. [85] A. Morlier, S. Cros, J.-P. Garandet, and N. Alberola, "Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates," Thin Solid Films, vol. 550, pp. 85-89, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.tsf.2013.10.140. [86] N. Inagaki, S. Tasaka, and A. Onodera, "Improved adhesion between Kapton film and copper metal by silane-coupling reactions," Journal of Applied Polymer Science, vol. 73, no. 9, pp. 1645-1654, 1999/08/29 1999, doi: https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1645::AID-APP5>3.0.CO;2-L. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-07-27 校外 Off-campus:開放下載的時間 available 2026-07-27 您的 IP(校外) 位址是 18.219.206.240 現在時間是 2025-05-03 論文校外開放下載的時間是 2026-07-27 Your IP address is 18.219.206.240 The current date is 2025-05-03 This thesis will be available to you on 2026-07-27. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-07-27 |
QR Code |