Responsive image
博碩士論文 etd-0629124-113452 詳細資訊
Title page for etd-0629124-113452
論文名稱
Title
基於光學諧波游標尺效應之開放式空腔法布里-培若光纖干涉儀感測器
Open-Cavity Fiber Fabry-Pérot Interferometer Sensor Based on Optical Harmonic Vernier Effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-07-23
繳交日期
Date of Submission
2024-07-29
關鍵字
Keywords
法布里-培若干涉儀、光纖感測器、開放式空腔、光學游標尺效應、光學諧波游標尺效應
Fabry-Pérot interferometer, fiber sensor, open cavity, optical Vernier effect, optical harmonic Vernier effect
統計
Statistics
本論文已被瀏覽 167 次,被下載 9
The thesis/dissertation has been browsed 167 times, has been downloaded 9 times.
中文摘要
光纖法布里-培若干涉儀感測器具有體積小、重量輕、抗電磁干擾及高靈敏度等優點。近年來,許多學者致力於提升光纖感測器對外部環境的靈敏度,有學者利用光學游標尺效應來實現。然而,該效應對於元件精確度要求非常嚴苛,在製程上須使用較為精密的儀器製作,導致成本過高。為了解決上述的缺點,我們進一步利用光學諧波游標尺效應於光纖法布里-培若干涉儀感測器,能比傳統游標尺效應容忍更大的製造公差,同時提供更高的感測靈敏度。
本論文製作出具有光學諧波游標尺效應之開放式空腔光纖法布里-培若干涉儀感測器,並進行溫度、濕度及氣壓的感測。在30℃至80℃的溫度量測範圍內,其靈敏度高達-0.216nm/℃。在濕度的感測方面,從56%RH至66%RH的量測範圍內,其相對濕度靈敏度為-0.441nm/RH%。在氣壓的感測中,從0psi至50psi量測範圍內,氣壓量測靈敏度為0.291nm/psi。此外,我們還對元件進行了氣壓穩定性及重複性的測試,實驗結果顯示,我們所製作的感測元件具有良好的氣壓穩定性及重複性。
Abstract
Fiber Fabry-Pérot interferometer (FPI) sensors possess advantages such as small size, light weight, resistance to electromagnetic interference, and high sensitivity. In recent years, many researchers have been dedicated to enhancing the sensitivities of fiber sensors to external environmental factors. Some researches utilize the optical Vernier effect to realized extra high sensitivities, which, however, requires extremely high precision in the length control and results in high costs. To address these drawbacks, we further employ the optical harmonic Vernier effect in fiber FPI sensors, which allows greater manufacturing tolerances compared to the traditional Vernier effect and offers higher sensing sensitivities.
This thesis proposes an open-cavity fiber FPI sensor based on the optical harmonic Vernier effect, which has been used in temperature, humidity, and pressure sensing. Within the temperature range of 30℃ to 80℃, the sensor can achieve a sensitivity of -0.216 nm/℃. For humidity sensing, in the range of 56%RH to 66%RH, the relative humidity sensitivity is -0.441 nm/RH%. In pressure sensing, within the range of 0 psi to 50 psi, the pressure sensitivity is 0.291 nm/psi. Additionally, we have also shown that our fabricated sensor exhibits good pressure stability and repeatability.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
第1章 緒論 1
1-1 光纖的發展史 1
1-2 光纖干涉儀感測器 3
1-2.1 馬赫-曾德爾光纖干涉儀(Mach-Zehnder fiber interferometer) 4
1-2.2 麥克森光纖干涉儀(Michelson fiber interferometer) 6
1-2.3 桑克光纖干涉儀(Sagnac fiber interferometer) 8
1-2.4 法布里-培若干涉儀(Fabry-Pérot interferometer) 9
1-3 研究動機 13
第2章 Fabry-Pérot光纖干涉儀 14
2-1 Fabry-Pérot干涉儀原理 14
2-2 Fabry-Pérot光纖干涉儀原理 23
第3章 基於光學諧波游標尺效應之光纖干涉儀 26
3-1 光學游標尺效應 26
3-2 光學諧波游標尺效應 33
第4章 基於光學諧波游標尺效應之光纖干涉儀元件製程 36
4-1 元件設計 36
4-2 元件製程 37
4-2.1 元件材料特性 37
4-2.2 儀器介紹 38
4-2.3 元件製程流程 40
第5章 基於光學諧波游標尺效應之光纖干涉儀基本特性 46
5-1 諧波游標尺效應之模擬 46
5-2 實驗裝置 49
5-3 元件參數對光學諧波游標尺效應干涉頻譜之影響 52
5-3.1 諧波階數與失諧對干涉頻譜之影響 52
第6章 基於諧波游標尺效應之開放式光纖干涉儀的感測應用 56
6-1 溫度感測設置 56
6-1.1 溫度感測 57
6-2 環境濕度感測設置 60
6-2.1 環境濕度感測 60
6-3 氣壓感測設置 63
6-3.1 氣壓感測架設 63
6-3.2 氣壓感測 64
6-3.3 氣壓穩定性量測 68
6-3.4 氣壓重複性量測 69
第7章 結論 70
參考文獻 72


圖目錄
圖1-1.1光纖基本結構 2
圖1-2.1總能量強度I與相位差φ關係 3
圖1-2.2(a)馬赫-曾德爾干涉儀及(b)馬赫-曾德爾光纖干涉儀之結構示意圖 4
圖1-2.3利用錯位結構製作之馬赫-曾德爾光纖干涉儀[16] 5
圖1-2.4利用花生結構結合無芯光纖製作之馬赫-曾德爾光纖干涉儀[17] 5
圖1-2.5 (a)麥克森干涉儀及(b)麥克森光纖干涉儀之結構示意圖 6
圖1-2.6利用錐狀結構製作之麥克森光纖干涉儀[18] 7
圖1-2.7利用空心光纖結構製作之麥克森光纖干涉儀[19] 7
圖1-2.8桑克光纖干涉儀之結構示意圖 8
圖1-2.9桑克光纖干涉儀[20] 9
圖1-2.10放電製作之封閉式共振腔體法布里-培若光纖干涉儀[21] 10
圖1-2.11以切割技術製作之封閉式共振腔體法布里-培若光纖干涉儀[22] 10
圖1-2.12利用側孔光纖及空心光纖製作之開放式共振腔體法布里-培若光纖干涉儀[23] 11
圖1-2.13利用飛秒雷射製作之開放式共振腔體法布里-培若光纖干涉儀[24] 12
圖2-1.1Fabry-Pérot干涉儀 14
圖2-1.2Fabry-Pérot干涉儀之干涉條紋[26] 15
圖2-1.3入射光接觸介面產生(a)正反應與(b)逆反應示意圖[27] 15
圖2-1.4光在Fabry-Pérot干涉儀行進之光路示意圖 17
圖2-1.5多光干涉示意圖 19
圖2-1.6 Fabry-Pérot干涉儀在不同反射率之干涉頻譜 21
圖2-2.1光在Fabry-Pérot光纖干涉儀共振腔中反射及穿透示意圖 23
圖2-2.2反射率為3.7%時的干涉頻譜 24
圖3-1.1游標卡尺精細度示意圖 27
圖3-1.2光學游標尺效應之頻譜示意圖。(a)兩個干涉儀之頻譜及(b)干涉頻譜結合後產生之包絡線[29] 28
圖3-1.3激發游標尺效應之串聯光纖干涉儀結構示意圖 28
圖3-2.1光學諧波游標尺效應之頻譜示意圖 34
圖3-2.2不同諧波階數之內部包絡線追蹤技術模擬圖。黑色曲線為反射光譜;虛線曲線為外包絡線;紅、藍、綠、紫色實曲線為內部包絡線。(a)0階HVE、(b)1階HVE、(c)2階HVE及(d)10階HVE[32] 35
圖4-1.1具有諧波游標尺效應之串聯開放式Fabry-Pérot光纖干涉儀結構示意圖 36
圖4-2.1光學顯微鏡所拍攝之(a)單模光纖及(b)空心光纖的剖面圖 37
圖4-2.2元件製程所需之(a)光纖切割刀及(b)光纖熔接機 38
圖4-2.3光纖研磨機台架設系統之(a)正視圖及(b)上視圖 39
圖4-2.4光纖熔接機內部系統檢測畫面 40
圖4-2.5熔接機之光纖軸向對齊顯示畫面 41
圖4-2.6單模光纖熔接空心光纖之流程。(a)單模光纖與空心光纖對齊放電及(b)熔接完之示意圖 41
圖4-2.7空心光纖切短示意圖及側面顯微鏡圖 42
圖4-2.8光纖研磨流程示意圖。(a)研磨角度調至60°。(b)啟動控制台讓研磨台自轉,並將光纖下降至研磨盤進行研磨。(c)光纖磨至適當斜面後關閉控制台讓研磨台停止自轉,再將光纖抬升上去。(d)研磨製作之單斜角單模光纖之側視圖 43
圖4-2.9熔接單斜角單模光纖與空心光纖示意圖。(a)光纖熔接及(b)成品示意圖 44
圖4-2.10開放式串聯Fabry-Pérot單模光纖切短示意圖 44
圖4-2.11具有諧波游標尺效應的開放式串聯Fabry-Pérot光纖干涉儀之結構示意圖 45
圖4-2.12利用光學顯微鏡拍攝之開放式串聯Fabry-Pérot光纖干涉儀 45
圖5-1.1(a)0階HVE、(b)1階HVE、(c)2階HVE及(d)3階HVE之干涉頻譜及內部包絡線模擬圖 47
圖5-1.2固定諧波階數並改變失諧為 (a)25μm、(b)35μm及(c)45μm之干涉頻譜及內部包絡線模擬圖 48
圖5-2.1量測串聯開放式FPI感測元件之反射頻譜實驗裝置圖 49
圖5-2.2光源初始頻譜 50
圖5-2.3元件反射頻譜 51
圖5-2.4規一化後的元件反射頻譜 51
圖5-3.1利用光學顯微鏡拍攝之(a)1階HVE、(b)2階HVE及(c)3階HVE之元件 52
圖5-3.2諧波階數為(a) 1階HVE、(b) 2階HVE及(c) 3階HVE之元件的反射頻譜 54
圖5-3.3 (a)1階HVE、(b)2階HVE及(c)3階HVE之反射頻譜的傅立葉轉換圖 55
圖6-1.1 HVE感測元件之溫度感測實驗設置 56
圖6-1.2溫度變化對應之包絡線移動 57
圖6-1.3溫度變化對1階HVE包絡線波谷位移線性圖 59
圖6-2.1環境濕度感測實驗設置 60
圖6-2.2濕度環境變化之反射頻譜 61
圖6-2.3濕度環境變化對1階HVE波谷位移之線性擬合圖 62
圖6-3.1氣壓感測元件之保護處理 63
圖6-3.2氣壓感測實驗設置 64
圖6-3.3氣壓差變化之包絡線頻譜 65
圖6-3.4氣壓差變化對2階HVE之包絡線波谷位移的線性擬合圖 67
圖6-3.5不同氣壓之元件穩定度量測 68
圖6-3.6 2階HVE元件之氣壓重複性量測 69

表目錄
表4-2.1光纖規格表 38
表5-3.1感測元件之諧波階數與失諧及放大倍率對感測靈敏度之影響對比表 53
表6-3.1氣壓換算單位表 64
表6-3.2不同氣壓與對應之折射率關係表 67

參考文獻 References
[1] P. Comtois, “John Tyndall and the floating matter of the air,” Aerobiologia, vol. 17, pp. 193-202, 2001.
[2] Z. Xu, W. Tu, F. Yang, N. Zong, B.-S. Wang, F.-F. Zhang, S.-J. Zhang, Z.-M. Wang, Q.-J. Peng, and D.-F. Cui, “Narrow linewidth 177.3-nm nanosecond laser with high efficiency and high power,” IEEE Photonics Technology Letters, vol. 26, no. 10, pp. 980-982, 2014.
[3] K. C. Kao, and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies." pp. 1151-1158.
[4] M. S. Pambianchi, M. Dejneka, T. Gross, A. Ellison, S. Gomez, J. Price, Y. Fang, P. Tandon, D. Bookbinder, and M.-J. Li, “Corning incorporated: Designing a new future with glass and optics,” Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products, pp. 1-38, 2016.
[5] S. Yuan, Z. Tong, J. Zhao, W. Zhang, and Y. Cao, “High temperature fiber sensor based on spherical-shape structures with high sensitivity,” Optics Communications, vol. 332, pp. 154-157, 2014.
[6] C. Bian, J. Wang, X. Bai, M. Hu, and T. Gang, “Optical fiber based on humidity sensor with improved sensitivity for monitoring applications,” Optics & Laser Technology, vol. 130, pp. 106342, 2020.
[7] H. Wei, M. Chen, and S. Krishnaswamy, “Three-dimensional-printed Fabry–Perot interferometer on an optical fiber tip for a gas pressure sensor,” Applied optics, vol. 59, no. 7, pp. 2173-2178, 2020.
[8] X. Zhu, W. Liu, A. Sun, Y. Pan, S. Li, J. Cao, G. Zhang, Y. Yang, F. Yang, and C. Wang, “Highly sensitive temperature and curvature sensor based on seven-core fiber,” Optics and Lasers in Engineering, vol. 169, pp. 107725, 2023.
[9] L. Dong, T. Gang, C. Bian, R. Tong, J. Wang, and M. Hu, “A high sensitivity optical fiber strain sensor based on hollow core tapering,” Optical Fiber Technology, vol. 56, pp. 102179, 2020.
[10] I. Floris, J. Madrigal, S. Sales, P. A. Calderón, and J. M. Adam, “Twisting measurement and compensation of optical shape sensor based on spun multicore fiber,” Mechanical Systems and Signal Processing, vol. 140, pp. 106700, 2020.
[11] Y. Zheng, X. Yang, W. Feng, and W. Fan, “Optical fiber refractive index sensor based on SMF-TCF-NCF-SMF interference structure,” Optik, vol. 226, pp. 165900, 2021.
[12] Y. Qian, Y. Zhao, Q.-l. Wu, and Y. Yang, “Review of salinity measurement technology based on optical fiber sensor,” Sensors and Actuators B: Chemical, vol. 260, pp. 86-105, 2018.
[13] A. Rovera, A. Tancau, N. Boetti, M. D. Dalla Vedova, P. Maggiore, and D. Janner, “Fiber optic sensors for harsh and high radiation environments in aerospace applications,” Sensors, vol. 23, no. 5, pp. 2512, 2023.
[14] T. Wu, G. Liu, S. Fu, and F. Xing, “Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure,” Sensors, vol. 20, no. 16, pp. 4517, 2020.
[15] R. Min, X. Hu, L. Pereira, M. S. Soares, L. C. Silva, G. Wang, L. Martins, H. Qu, P. Antunes, and C. Marques, “Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications,” Optics & Laser Technology, vol. 147, pp. 107626, 2022.
[16] S. Liu, H. Meng, S. Deng, Z. Wei, F. Wang, and C. Tan, “Fiber humidity sensor based on a graphene-coated core-offset Mach–Zehnder interferometer,” IEEE Sensors Letters, vol. 2, no. 3, pp. 1-4, 2018.
[17] X. Wang, C. Li, J. Li, H. Chen, S. Feng, L. Meng, and M. Lv, “An Optical Fiber Magnetic Field Sensor Based on Mach-Zehnder Interferometer Composed of Two Peanut-Shaped Structures and Tapered No-core Fiber,” IEEE Sensors Journal, 2023.
[18] J. Guo, S. Lian, Y. Zhang, Y. Zhang, D. Liang, Y. Yu, R. Chen, C. Du, and S. Ruan, “High-temperature measurement of a fiber probe sensor based on the Michelson interferometer,” Sensors, vol. 22, no. 1, pp. 289, 2021.
[19] B. Xu, Y. Guo, X. Ma, Y. Zhang, C.-L. Zhao, and D. Wang, “Highly sensitive fiber relative humidity sensor based on tip Michelson interferometer with agarose gel coating,” IEEE Sensors Journal, vol. 23, no. 2, pp. 1139-1145, 2022.
[20] J. Zhao, Y. Zhao, L. Bai, and Y.-n. Zhang, “Sagnac interferometer temperature sensor based on microstructured optical fiber filled with glycerin,” Sensors and Actuators A: Physical, vol. 314, pp. 112245, 2020.
[21] M. F. Domingues, C. A. Rodriguez, J. Martins, C. Tavares, C. Marques, N. Alberto, P. André, and P. Antunes, “Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities,” Optical Fiber Technology, vol. 42, pp. 56-62, 2018.
[22] J. Tian, Y. Jiao, Q. Fu, S. Ji, Z. Li, M. Quan, and Y. Yao, “A Fabry–Perot interferometer strain sensor based on concave-core photonic crystal fiber,” Journal of Lightwave Technology, vol. 36, no. 10, pp. 1952-1958, 2018.
[23] R. Wang, and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry—Perot interferometer with open cavity,” IEEE Photonics Technology Letters, vol. 27, no. 3, pp. 245-248, 2014.
[24] J. Tang, G. Yin, C. Liao, S. Liu, Z. Li, X. Zhong, Q. Wang, J. Zhao, K. Yang, and Y. Wang, “High-sensitivity gas pressure sensor based on Fabry–Perot interferometer with a side-opened channel in hollow-core photonic bandgap fiber,” IEEE Photonics Journal, vol. 7, no. 6, pp. 1-7, 2015.
[25] A. Pérot, and C. Fabry, “On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,” Astrophysical Journal, vol. 9, p. 87, vol. 9, pp. 87, 1899.
[26] F. A. Jenkins, and H. E. White, “Fundamentals of optics,” Indian Journal of Physics, vol. 25, pp. 265-266, 1957.
[27] B. A. Lengyel, “A note on reflection and transmission,” Journal of Applied Physics, vol. 22, no. 3, pp. 263-264, 1951.
[28] E. Hecht, Optics, 5e: Pearson Education India, 2002.
[29] A. D. Gomes, H. Bartelt, and O. Frazão, “Optical Vernier effect: recent advances and developments,” Laser & photonics reviews, vol. 15, no. 7, pp. 2000588, 2021.
[30] M.-q. Chen, T.-y. He, and Y. Zhao, “Review of femtosecond laser machining technologies for optical fiber microstructures fabrication,” Optics & Laser Technology, vol. 147, pp. 107628, 2022.
[31] A. D. Gomes, M. S. Ferreira, J. Bierlich, J. Kobelke, M. Rothhardt, H. Bartelt, and O. Frazão, “Optical harmonic Vernier effect: A new tool for high performance interferometric fiber sensors,” Sensors, vol. 19, no. 24, pp. 5431, 2019.
[32] H. Qiu, J. Tian, and Y. Yao, “Ultrasensitive refractive index fiber sensor based on high-order harmonic Vernier effect and a cascaded FPI,” Optics Express, vol. 31, no. 8, pp. 13053-13064, 2023.
[33] H. Chen, C. Jiang, X. Zhu, X. Guo, H. Li, and S. Sun, “A parallel optical fiber Fabry–Perot interferometer for simultaneous measurement of relative humidity and temperature,” IEEE Sensors Journal, vol. 22, no. 18, pp. 17845-17853, 2022.
[34] T.-y. He, M.-q. Chen, Y. Zhao, and H.-m. Wei, “Optical fiber Fabry-Perot silica-microprobe for a gas pressure sensor,” Optics & Laser Technology, vol. 152, pp. 108106, 2022.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code