論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2035-02-18
校外 Off-campus:開放下載的時間 available 2035-02-18
論文名稱 Title |
四吋碳化矽單晶生長與品質分析 4-inch Silicon Carbide Single Crystal Growth and Quality Analysis |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
70 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-17 |
繳交日期 Date of Submission |
2025-02-18 |
關鍵字 Keywords |
物理汽相傳輸法、碳化矽、單晶生長、多型、電阻率 Physical Vapor Transport, Silicon Carbide, Single Crystal Growth, Polytype, Resistivity |
||
統計 Statistics |
本論文已被瀏覽 35 次,被下載 0 次 The thesis/dissertation has been browsed 35 times, has been downloaded 0 times. |
中文摘要 |
本實驗透過自行設計之物理汽相傳輸法 (Physical Vapor Transport, PVT) 設備以及石墨熱場生長4H碳化矽 (Silicon Carbide, SiC)單晶。在長晶時控制適合生長的壓力及溫度,使用氬氣 (Argon, Ar)當作載流氣體,讓碳化矽原料昇華並輸送至籽晶上進行生長。 本研究透過更改實驗方式,改變碳化矽籽晶於整個熱場中的位置,並選擇適當石墨板及石墨膠,使得碳化矽晶體更傾向生長出完整單晶,同時改善品質。成功生長的晶體經過切片處理後,經過熔融KOH蝕刻碳化矽晶圓後,將一片片晶圓透過紫外光燈(UV light)、光學顯微鏡 (Optical Microscope, OM)、能量散射光譜儀(Energy Dispersive Spectroscopy, EDS)、拉曼光譜 (Raman spectroscopy)、高解析X光繞射分析儀 (HRXRD)及四點探針 (Four point probe)來觀測、分析晶圓的表面形貌、多型分布、電性、品質及缺陷等,確立更加適合碳化矽單晶生長之條件。 |
Abstract |
In this experiment, 4H silicon carbide (SiC) single crystals were grown using a custom-designed Physical Vapor Transport (PVT) apparatus and a graphite heating field. During the crystal growth process, pressure and temperature were carefully controlled, and argon gas (Ar) was utilized as the carrier gas to transport the sublimated silicon carbide material onto the seed crystal for growth. By modifying the experimental approach, the position of the silicon carbide seed crystal within the entire heating field was altered, and appropriate graphite plates and graphite adhesive were selected to promote the growth of complete single crystals and improve their quality. After successful crystal growth, the crystals were sliced and subjected to molten KOH etching to reveal the SiC wafers' surface morphology. These wafers were then analyzed using ultraviolet light, an optical microscope (OM), energy dispersive spectroscopy (EDS), Raman spectroscopy, high-resolution X-ray diffraction analysis (HRXRD), and Four point probe to observe and analyze the surface morphology, polytype distribution, electricity, quality and defects, etc., thus establishing conditions more suitable for silicon carbide single crystal growth. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 viii 表次 xi 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論基礎與文獻回顧 3 2.1 碳化矽(Silicon Carbide, SiC)基本性質 3 2.2 碳化矽製程 7 2.2.1 碳化矽單晶生長法 7 2.2.2 碳化矽單晶生長機制 9 2.2.3 碳化矽單晶生長變因 10 2.3 碳化矽之缺陷 11 2.3.1 微管 11 2.3.2 差排 12 2.3.3 疊差 12 2.3.4 多型碳化矽 14 2.4 有利於4H-SiC單晶生長之因素 15 2.4.1 因素一:氣相組成 15 2.4.2 因素二:溫度 15 2.4.3 因素三:氮滲透 15 2.4.4 因素四:籽晶面 16 2.4.5 因素五:添加CeO2 16 第三章 實驗內容 18 3.1 實驗流程 18 3.2 實驗步驟 18 3.2.1 籽晶固定 18 3.2.2 晶體生長 19 第四章 實驗結果 20 4.1 改善過程及成果 20 4.1.1 石墨Holder 20 4.1.2 籽晶黏貼膠 22 4.1.3 石墨紙環 22 4.2 長晶與切片結果 23 4.2.1 23S09晶體及切片後資訊 24 4.2.2 23S17晶體及切片後資訊 26 4.2.3 23S18晶體及切片後資訊 28 4.2.4 23S20晶體及切片後資訊 30 4.3 分析儀器 33 4.3.1 光學顯微鏡(Optical microscope) 33 4.3.2 掃描式電子顯微鏡(SEM)及能量散射光譜儀(EDS) 33 4.3.3 拉曼光譜儀(Raman spectroscope) 34 4.3.4 四點探針(Four point probe) 34 4.3.5 高解析X光繞射分析儀(HRXRD) 35 4.4 碳化矽晶圓量測與分析 35 4.4.1 拉曼光譜儀 35 4.4.2 OM光學顯微鏡 40 4.4.3 四點探針 41 4.4.4 HR-XRD 45 4.4.5 EDS分析 49 第五章 結論 51 參考文獻 52 |
參考文獻 References |
[1] Chelnokov, Syrkin, "High temperature electronics using SiC: actual situation and unsolved problems," Materials Science and Engineering, vol. 46, 1997, pp. 248-253. [2] Kohei Sasaki, Masataka Higashiwaki, Akito Kuramata, Takekazu Masui, Shigenobu Yamakoshi, "MBE grown Ga2O3 and its power device applications," Journal of Crystal Growth, vol. 378, 2013, pp. 591-595. [3] Tsunenobu Kimoto, James Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications, John Wiley & Sons, 2014. [4] Huang, Alex Q, "Power semiconductor devices for smart grid and renewable energy systems," Power electronics in renewable energy systems and smart grid: Technology and applications, 2019, pp. 85-152. [5] Satyendra Kumar Mourya, Gaurav Malik, Brijesh Kumar, Ramesh Chandra, "The role of non-homogeneous barrier on the electrical performance of 15R–SiC Schottky diodes grown by in-situ RF sputtering," Materials Science in Semiconductor Processing, vol. 149, 2022, pp. 106855. [6] Willem Van Haeringen, Peter Bobbert, Walter H Backes, "On the band gap variation in SiC polytypes," Physica Status Solidi, vol. 202, 1997, pp. 63-79. [7] Fumio Kawamura, Takashi Ogura, Mamoru Imade, Masashi Yoshimura, Yasuo Kitaoka, Yusuke Mori, Takatomo Sasaki, "Growth of 2H–SiC single crystals in a Li-based flux," Materials Letters, vol. 62, 2008, pp. 1048-1051. [8] Andrey Lebedev, Pavel Abramov, Elena Bogdanova, Andrey Zubrilov, Sergey Lebedev, Nelson Dana, Natalya Seredova, Alekesi Smirnov, Alla Tregubova, "Study of the 3C-SiC layers grown on the 15R-SiC substrates," Semiconductors, vol. 43, 2009, pp. 756-759. [9] Taro Nishiguchi, Takashi Shimizu, Makato Sasaki, Sachi Ohshima, Shigehiro Nishino, "Crystal growth of 15R-SiC and various polytype substrates," in Materials Science Forum, Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland, vol. 353, 2001, pp. 69-72. [10] Rodrigues, Clóves Gonçalves, "Electron mobility in bulk n-doped SiC-polytypes 3C-SiC, 4H-SiC, and 6H-SiC: A comparison," Semiconductors, vol. 55, 2021, pp. 625-632. [11] Wai Yim Ching, Yong Nian Xu, Paul Rulis, Lizhi Ouyang, "The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC," Materials Science and Engineering, vol. 422, 2006, pp. 147-156. [12] Tao Liu, Zongwei Xu, Mathias Rommel, Hong Wang, Ying Song, Yufang Wang, Fengzhou Fang, "Raman characterization of carrier concentrations of Al-implanted 4H-SiC with low carrier concentration by photo-generated carrier effect," Crystals, vol. 9, 2019, pp. 428. [13] Taillon, Joshua Aaron, "Advanced analytical microscopy at the nanoscale: Applications in wide bandgap and solid oxide fuel cell materials," University of Maryland, College Park, 2016. [14] Alexandre Ellison, Björn Magnusson, Björn Sundqvist, Galia Pozina, Peder Bergman, Erik Janzén, Vehanen, "SiC crystal growth by HTCVD," in Materials Science Forum, Trans Tech Publications, vol. 457, 2004, pp. 9-14. [15] Leon Sadler, Muhammad Shamsuzzoha, "Response of silicon carbide to high-intensity laser irradiation in a high-pressure inert gas atmosphere," Journal of Materials Research, vol. 12, 1997, pp. 147-160. [16] Shinichi Nishizawa, Tomohisa Kato, Kazuo Arai, "Effect of heat transfer on macroscopic and microscopic crystal quality in silicon carbide sublimation growth," Journal of Crystal Growth, vol. 303, 2007, pp. 342-344. [17] Vasiliauskas, Remigijus, "Sublimation growth and performance of cubic silicon carbide," Linköping University Electronic Press, 2012. [18] 施爾畏,碳化矽晶體生長與缺陷 The Growth and Defects of Silicon Carbide Crystal,科學出版社,北京,2012出版。 [19] Chen, P. C., W. C. Miao, T. Ahmed, Y. Y. Pan, C. L. Lin, S. C. Chen, H. C. Kuo, B. Y. Tsui, and D. H. Lien, "Defect inspection techniques in SiC," Nanoscale Research Letters, vol. 17, 2022, pp. 30. [20] Leonard, Rt, Y Khlebnikov, Adrian R Powell, C Basceri, Mf Brady, I Khlebnikov, Jason R Jenny, Dp Malta, Michael J Paisley, and Valeri F Tsvetkov, "100 mm 4HN-SiC wafers with zero micropipe density," in Materials Science Forum, Trans Tech Publ, vol. 600, 2009, pp. 7-10. [21] Junlin Liu, Jiqiang Gao, Jikuan Cheng, Jianfeng Yang, Guanjun Qiao, "Model for micropipe formation in 6H-SiC single crystal by sublimation method," Materials Letters, vol. 59, 2005, pp. 2374-2377. [22] Milan Yazdanfar, Henrik Pedersen, Olle Kordina, Erik Janzén, "Effect of process parameters on dislocation density in thick 4H-SiC epitaxial layers grown by chloride-based CVD on 4 degrees off-axis substrates," in The International Conference on Silicon Carbide and Related Materials, September 29-October 4, 2013, Phoenix Seagaia Resort, Miyazaki, Japan, Trans Tech Publications, vol. 778, 2014, pp. 159-162. [23] Hidekazu Tsuchida, Isaho Kamata, Makoto Nagano, "Formation of basal plane Frank-type faults in 4H-SiC epitaxial growth," Journal of Crystal Growth, vol. 310, 2008, pp. 757-765. [24] Maya Marinova, Teddy Robert, Sandrine Juillaguet, Ioannis Tsiaoussis, Nikolaos Frangis, Efstathios Polychroniadis, Jean Camassel, Thierry Chassagne, "Combined structural and optical studies of stacking faults in 4H‐SiC layers grown by chemical vapour deposition," Physica Status Solidi, vol. 206, 2009, pp. 1924-1930. [25] Hans Joachim Rost, Danielle Doerschel, Klaus Irmscher, Detlev Schulz, Dietmar Siche, "Influence of nitrogen doping on the properties of 4H–SiC single crystals grown by physical vapor transport," Journal of Crystal Growth, vol. 257, 2003, pp. 75-83. [26] Mark E Dudley, Fan Wu, Hailiang Wang, Sridhar Byrappa, Balaji Raghothamachar, Giltsu Choi, Shikuan Sun, Elynn Kann Sanchez, Darren M Hansen, "Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+ a during the physical vapor transport growth of 4H–SiC," Applied Physics Letters, vol. 98, 2011. [27] Sukit Limpijumnong, Walter Lambrecht, "Total energy differences between SiC polytypes revisited," Physical Review, vol. 57, 1998, pp. 12017. [28] Wellmann, Peter J, "Review of SiC crystal growth technology," Semiconductor Science and Technology, vol. 33, 2018, pp. 103001. [29] Yakimova, R., M. Syvajarvi, T. Iakimov, H. Jacobsson, R. Raback, A. Vehanen, and E. Janzen, "Polytype stability in seeded sublimation growth of 4H-SiC boules," Journal of Crystal Growth, vol. 217, 2000, pp. 255-262. [30] Yu M Tairov, Valeri F Tsvetkov, "Progress in controlling the growth of polytypic crystals," Progress in Crystal Growth and Characterization, vol. 7, 1983, pp. 111-162. [31] Bickermann, Matthias, "Einfluß von Druck-und Temperaturverlauf auf das Ankeimverhalten bei der SiC-Kristallzüchtung," Lehrstuhl für Werkstoffwissenschaften, 1998, pp. 78. [32] Hans Joachim Rost, Danielle Doerschel, Klaus Irmscher, Matthias Rossberg, Dirk Schulz, Dietmar Siche, "Polytype stability in nitrogen-doped PVT grown 2″ 4H-SiC crystals," Journal of Crystal Growth, vol. 275, 2005, pp. 451-454. [33] Emil Tymicki, Krzysztof Grasza, Katarzyna Racka, Tadeusz Łukasiewicz, Miroslaw Piersa, Kinga Kościewicz, Dominika Teklińska, Ryszard Diduszko, Paweł Skupiński, Rafał Jakieła, Jerzy Krupka, "Effect of nitrogen doping on the growth of 4H polytype on the 6H-SiC seed by PVT method," in Materials Science Forum, Trans Tech Publication, vol. 717, 2012, pp. 29-32. [34] Rositsa Yakimova, Mikael Syväjärvi, Tihomir Iakimov, Henrik Jacobsson, Peter Råback, Asko Vehanen, Erik Janzén, "Polytype stability in seeded sublimation growth of 4H–SiC boules," Journal of Crystal Growth, vol. 217, 2000, pp. 255-262. [35] Katarzyna Racka, Emil Tymicki, Krzysztof Grasza, Rafał Jakieła, Marcin Pisarek, Barbara Surma, Andrei Avdonin, Paweł Skupiński, Jerzy Krupka, "Growth of SiC by PVT method with different sources for doping by a cerium impurity, CeO2 or CeSi2," Journal of Crystal Growth, vol. 401, 2014, pp. 677-680. [36] Racka-Szmidt, K, E Tymicki, M Raczkiewicz, J Sar, T Wejrzanowski, and K Grasza, "Effect of cerium impurity on the stable growth of the 4H-SiC polytype by the physical vapour transport method," Journal of Crystal Growth, vol. 586, 2022, pp. 126616. [37] 鄭永旺,以物理汽相傳輸法生長四吋4H碳化矽單晶之研究,國立中山大學材料與光電科學學系,2023。 [38] Rachel Bang, Da Mi Yim, Doh Hyung Riu, Sung Tag Oh, "Synthesis of SiC/Cu composite powders from polycarbosilane and cupric nitrate trihydrate," Archives of Metallurgy and Materials, vol. 60, 2015, pp. 1261-1263. [39] Zeng Ze Wang, Zhou Li Wu, Ming Ming Ge, Hui Qiang Bao, Zhi Fang Ma, Jun Wu, "Study on carbon particle inclusions during 4H-SiC growth by using physical vapor transport system," in Materials Science Forum, Trans Tech Publication, vol. 954, 2019, pp. 46-50. [40] Ankit Patel, Mani Mittal, Dv Sridhara Rao, Anupam Garg, Renu Tyagi, Om Prakash Thakur, "Syntaxy and defect distribution during the bulk growth of 4H-SiC single crystal," Journal of Materials Science: Materials in Electronics, vol. 32, 2021, pp. 2187-2192. [41] Aman Arora, Akhilesh Pandey, Ankit Patel, Sandeep Dalal, Brajesh Yadav, Anshu Goyal, Rema Raman, Om Prakash Thakur, Renu Tyagi, "Polytype switching identification in 4H-SiC single crystal grown by PVT," Journal of Materials Science: Materials in Electronics, vol. 31, 2020, pp. 16343-16351. [42] Chun Jun Liu, Xiao Long Chen, Tong Hua Peng, Bo Wang, Wen Jun Wang, Gang Wang, "Step flow and polytype transformation in growth of 4H-SiC crystals," Journal of Crystal Growth, vol. 394, 2014, pp. 126-131. [43] Dietmar Siche, Hans Joachim Rost, Danielle Doerschel, Detlev Schulz, Juergen Wollweber, "Evolution of domain walls in 6H- and 4H-SiC single crystals," Journal of Crystal Growth, vol. 237, 2002, pp. 1187-1191. [44] Guo Sheng Sun, Xing Fang Liu, Hai Lei Wu, Guo Guo Yan, Dong Lin, Zheng Liu, Wan Shun Zhao, Lei Wang, Yi Ping Zeng, Xi Guang Li, "Determination of the transport properties in 4H-SiC wafers by Raman scattering measurement," Chinese Physics, vol. 20, 2011, pp. 033301. [45] Masakazu Katsuno, Noboru Ohtani, Jun Takahashi, Hirokatsu Yashiro, Masatoshi Kanaya, "Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation," Japanese Journal of Applied Physics, vol. 38, 1999, pp. 4661. [46] Wolfgang Choyke, Hiroyuki Matsunami, Gerhard Pensl, Silicon carbide: recent major advances, Springer Science & Business Media, 2003. [47] Larkin, Daniel, "SiC dopant incorporation control using site‐competition CVD," Physica Status Solidi, vol. 202, 1997, pp. 305-320. [48] Noboru Ohtani, Masakazu Katsuno, Masashi Nakabayashi, Tatsuo Fujimoto, Hiroshi Tsuge, Hirokatsu Yashiro, Takashi Aigo, Hosei Hirano, Taizo Hoshino, Kohei Tatsumi, "Investigation of heavily nitrogen-doped n+ 4H–SiC crystals grown by physical vapor transport," Journal of Crystal Growth, vol. 311, 2009, pp. 1475-1481. [49] Seoyong Ha, Noel Nuhfer, Gregory Rohrer, Marc De Graef, Marek Skowronski, "Origin of domain structure in hexagonal silicon carbide boules grown by the physical vapor transport method," Journal of Crystal Growth, vol. 220, 2000, pp. 308-315. [50] Kyung Han Kang, Taihee Eun, Myong Chul Jun, Byeong Joo Lee, "Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach," Journal of Crystal Growth, vol. 389, 2014, pp. 120-133. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2035-02-18 校外 Off-campus:開放下載的時間 available 2035-02-18 您的 IP(校外) 位址是 216.73.216.89 現在時間是 2025-06-21 論文校外開放下載的時間是 2035-02-18 Your IP address is 216.73.216.89 The current date is 2025-06-21 This thesis will be available to you on 2035-02-18. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2030-02-18 |
QR Code |