論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
一無電容具部分隔離氧化層與埋藏式電流橋之三閘極單電晶體動態隨機存取記憶體 A Capacitorless Triple-Gate 1T-DRAM with Middle Partial Insulation and Current Bridge |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
59 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2013-07-18 |
繳交日期 Date of Submission |
2013-08-02 |
關鍵字 Keywords |
單電晶體無電容式動態隨機存取記憶體、資料保存時間、中間隔離氧化層、三閘極電晶體、電流橋 Middle Partial Insulation, 1T-DRAM, Data Retention Time, Triple-gate MOSFET, Current Bridge |
||
統計 Statistics |
本論文已被瀏覽 5729 次,被下載 958 次 The thesis/dissertation has been browsed 5729 times, has been downloaded 958 times. |
中文摘要 |
在本篇論文中,我們提出了具中間隔離氧化層和電流橋架構之三閘極電晶體(Triple-Gate Middle Partial Insulation, TGMPI ),並應用在無電容式單電晶體動態隨機存取記憶體(Capacitorless One Transistor Dynamic Random Access Memory, 1T-DRAM )。藉由TCAD ISE10.0的模擬確認各個製程參數與元件特性。我們比較TGMPI元件與傳統電流橋(Con. N-bridge)1T-DRAM架構之記憶體性能。首先我們討論元件的記憶體特性,其中TGMPI抬高式中性區結構,明顯地提升了1T-DRAM的可程式規劃視窗(Programming Window),其改善的幅度約為284 %;而在資料保存時間(Data Retention Time)的表現上,因為本體中性區的增加,加上中間隔離氧化層的輔助下,減少接面漏電流且降低電洞逸散機率,在高溫操作下的退化程度為24.1 %,大幅改善傳統元件94.8 %的退化程度。TGMPI 相較於傳統N-bridge具有良好的溫度容忍度。此外,因為TGMPI元件為三閘極架構,此結構對於資料的寫入與抹除速度和功率消耗比起傳統有更優秀的表現,這將對未來1T-DRAM提供一項極佳的解決方案。 |
Abstract |
In this paper, we propose a novel triple-gate middle partial insulator (TGMPI) with current bridge structure for capacitorless one transistor dynamic random access memory (1T-DRAM) application. We used the TCAD ISE 10.0 tool to simulate memory characteristics, confirm fabrication parameters and device performance. The proposed TGMPI 1T-DRAM has the enlarged neutral body region to assemble carriers which made larger sensing window between data”1” and data”0”. With more holes are assembled in the body, programming is greatly improved up to 284 %. As far as the data retention time is concerned, the characteristics are also compatible with the conventional N-bridge structure in micro second scale. Under high temperature operation circumstances, our proposed TGMPI 1T-DRAM shows great thermal immunity which is required for embedded memory. The data retention time degradation of our proposed TGMPI device is about 24.1 % at 400 K, improved greatly from the conventional one’s 94.8 %. Furthermore, TGMPI also posses excellent operation speed for writing and erasing data because of triple-gate structure, suggesting that the proposed TGMPI can become a promising candidate for future memory application. |
目次 Table of Contents |
第一章 導論 1 1.1 研究背景 1 1.2 動機 5 第二章 操作原理 6 2.1 運用機制 6 2.2 元件操作說明 7 第三章 元件製作 10 3.1 模擬元件 10 3.2 元件實作 12 第四章 研究方法與結果討論 14 4.1 研究方法 14 4.2 記憶體特性探討 16 4.2.1 元件架構說明 16 4.3 可程式規劃視窗 ( Programming Window ) 18 4.4 資料保存時間 (Data Retention Time) 26 4.5 元件操作速度與溫度之影響 28 4.6 元件容忍度 (Endurance) 31 4.7 元件功率消耗 33 4.8 元件實作結果與量測 37 第五章 結論與未來發展 40 5.1 結論 40 5.2 未來發展 41 參考文獻 42 附錄 – 實作檢討與討論 46 論文著述 49 |
參考文獻 References |
[1] K. Kim, C.-G. Hwang, and J.-G. Lee,“DRAM Technology Perspective for Gigabit Era,”IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 598-608, Mar. 1998. [2] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Second Edition, Cambridge University Press, 2009. [3] H. Sunami, T. Kure, N. Hashimoto, K. Toyabe, and S. Asai, “A Corrugated Capacitor Cell (CCC),” IEEE Trans. Electron Devices, vol. ED-31, no. 6, pp. 746-753, Jun. 1984. [4] L. Nesbit, J. Alsmeier, B. Chen, J. Debrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchi, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6μm2 256Mb Trench DRAM Cell with Self-Aligned BuriED Strap (BEST),” in IEDM Tech. Dig., Dec. 5-8, 1993, pp. 627-630. [5] D. Temmler, “Multilayer Vertical Stacked Capacitors (MVSTC) for 64Mbit and 256Mbit DRAMs,” in VLSI Symp. Tech. Dig., May 28-30, 1991, pp. 13-14. [6] T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAMs,”IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 255-261, Feb. 1991. [7] H. Shinriki, Y. Nishioka, Y. Ohji, and K. Mukai, “Oxidized Ta2O5/Si3N4 Dielectric Films on Poly-Crystalline Si for Dram’s,” IEEE Trans. Electron Devices, vol. 36, NO. 2, pp. 328-332, Feb. 1989. [8] S. W. Yang, W. S. Liao, L. Economikos, A. Guliani, D. Yang, B. Y. Kim, D. Dobuzinsky, and S. Shih, “Structural Demonstration of Cost Effective Isolation Trench Fill for Sub-110nm Vertical Trench DRAM and SOC Applications,” in Int. Symp. VLSI Tech. Sys. Appl., Oct. 6-8, 2003, pp. 117-120. [9] W. Mueller, G. Aichmayr, W. Bergner, M. Goldbach, T. Hecht, S. Kudelka, F. Lau, J. Nuetzel, A. Orth, T. Schloesser, A. Scholz, A. Sieck, A. Spitzer, M. Strasser, P. F. Wand, S. Wege, and R. Weis, “Trench DRAM Technology for the 50nm Node and Beyond,” in Int. Symp. VLSI Tech. Sys. Appl., Apr. 24-26, 2006, pp. 1-2. [10] H.-J. Wann and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., 1933, pp. 635-638. [11] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001 , pp. 153-154. [12] P. Fazan, S. Okhonin, M. Nagoga, J. M. Sallese, L. Portmann, R. Ferrant, M. Kayal, M. Pastre, M. Blagojevic, A. Borschberg, and M. Declercq, “Capacitor-less 1T-transistor DRAM ” in Proc. IEEE Int. SOI Conf., Oct. 2002, pp. 10-13. [13] P. C. Fazan, S. Okhonin, M. Nagoga, and J.-M. Sallese, “A Simple 1-Transistor Capacitor-less Memory Cell for High Performance Embedded DRAMs,” in Proc. IEEE Custom Integrated Circuit Conf., 2002, pp. 99-102. [14] D.-i. Bae, S. Kim, and Y.-K. Choi, “Low-cost and highly heat controllable capacitorless PiFET (Partially insulated FET) 1T DRAM for embedded memory,” IEEE Trans. on Nanotechnology, vol. 8, no. 1, pp. 100-105, Jan. 2009. [15] J.-W. Han, S.-W. Ryu, S. Kim, C.-J. Kim, J.-H. Ahn, S.-J. Choi, J. S. Kim, K. H. Kim, G. S. Lee, J. S. Oh, M. H. Song, Y. C. Park, J. W. Kim, and Y.-K. Choi, “A Bulk FinFET unified-RAM (URAM) cell for multifunctioning NVM and capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 632–634, Jun. 2008. [16] T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on A Capacitorless 1T-DRAM: from Single-gate PD-SOI to Double-gate FinDRAM, ” in IEDM Tech. Dig., 2004, pp. 919-922. [17] T. Shino, I. Higashi, K. Fujita, T. Ohsawa, Y. Minami, T. Yamada, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, and A. Nitayama, “Highly Scalable FBC (floating body cell) with 25nm BOX Structure for Embedded DRAM Applications,” in VLSI Symp. Tech. Dig., Jun. 2004, pp. 132-133. [18] J.-T. Lin, K.-D. Huang, and B.-T. Jhrng, “Performance of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors with Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222-1225, Nov. 2008. [19] K.-W. Song, H. Jeong, J.-W. Lee, S. I. Hong, N.-K. Tak, Y.-T. Kim, Y. L. Choi, H. S. Joo, S. H. Kim, H. J. Song, Y. C. Oh, W.-S. Kim, Y.-T. Lee, K. Oh, and C. Kim, “55nm Capacitor-less 1T DRAM Cell Transistor with Non-overlap Structure,”in IEDM Tech. Dig., 2008, pp. 1-4. [20] E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-induced Drain-leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006. [21] J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-induced Drain-leakage (GIDL) Programming Method for Soft-programming-free Operation in Unified RAM (URAM),”IEEE Electron Device Lett., vol. 30, no. 2, pp.189-191, Feb. 2009. [22] S. Puget, G. Bossu, C. Fenouiller-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J.-M. Portal, R. Bouchakour, and T. Skotnicki,“FDSOI Floating Body Cell eDRAM Using Gate-induced Drain-leakage (GIDL) Write Current for High Speed and Low Power Applications,” in Proc. IEEE Int. Memory workshop Conf., May 2009, pp. 1-2. [23] G. Kim, S.-W. Kim, J.-Y. Song, J.-P. Kim, K.-C.Ryoo, J.-H. Oh, J.-H. Park, and H.-W. Kim, B.-G. Park, “Body-raised Double-gate structure for 1T DRAM,” in Proc. IEEE Nano. Materials and Devices Conf., Jun. 2009, pp. 1-6. [24] N. Collaert, M. Aoulaiche, M. Rakowski, B. De Wachter, K. Bourdelle, B.-Y. Nguyen, F. Boedta, D. Delprat, and M. Jurczak, “Analysis of Sense Margin and Reliability of 1T-DRAM Fabricated on Thin-film UTBOX Substrates,” in Proc. IEEE Int. SOI Conf., Oct. 5-7 2009, pp. 1-2. [25] M. Bawedin, S. Cristoloveanu, and D. Flandre,“A Capacitorless 1T-DRAM on SOI based on Dynamic Coupling and Double-Gate Operation,”IEEE Electron Device Lett., vol. 29, no. 7, pp. 795-798, Jul. 2008. [26] Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-based 1T DRAM Cells,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 565-567, May 2009. [27] D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Trans. Electron Devices, vol. 31, no. 9, pp. 909-911, Sep. 2010. [28] M. Aoulaiche, N. Collaert, R. Degraeve, Z. Lu, B.D. Wachter, G. Groeseneken, M. Jurczak, and L. Altimime, “BJT-Mode Endurance on a 1T-RAM Bulk FinFET Device,” IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1380-1382, Dec. 2010. [29] N. Rodriguez, F. Gamiz, and S. Cristoloveamu,“ARAM Memory Cell Concept and Operation,”IEEE Electron Device Lett., vol. 31, no. 9, pp. 972-974, Sep. 2010. [30] N. Rodriguez, S. Cristoloveamu, and F. Gamiz,“Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible with Bulk and SOI Substrates”IEEE Electron Device Lett., vol. 58, no. 8, pp. 2371-2377, Aug. 2011. [31] M. G. Ertosun, P. Kapur, and K. C. Saraswat, “ A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM:1T-QW DRAM,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1405-1407, Dec. 2008. [32] H. Jeong, K.-W. Song, I. H. Park, T.-H. Kim, Y. S. Lee, S.-G. Kim, J. Seo, K. Cho, K. Lee, H. Shin, J. D. Lee, and B.-G. Park, “A New Capacitorless 1T DRAM Cell:Surrounding Gate MOSFET with Vertical Channel (SGVC Cell),” IEEE Trans. on Nanotechnology, vol. 6, no. 3, pp. 352-357, May 2007. [33] M. G. Ertosun, H. Cho, P. Kapur, and K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM, ” IEEE Electron Device Lett., vol. 29, no. 6, pp. 615-617, May 2008. [34] J. S. Shin, H. Bae, J. Jang, D. Yun, J. Lee, E. Hong, D. H. Kim, and D. M. Kim, “A Novel Double HBT-Based Capacitorless 1T DRAM Cell with Si/SiGe Heterojunctions, ” IEEE Electron Device Lett., vol. 32, no. 7, pp. 850-852, Jul. 2011. [35] F. Gamiz, N. Rodriguez, and S. Cristoloveanu, “ 3D Trigate 1R-DRAM Memory Cell for 2x nm Node,” in IEEE Int. Memory Workshop Conf., May 2012, pp. 1-4. [36] U. Avci, I. Ban, D. Kenche, and P. Chang, “Floating body cell (FBC) memory for 16-nm technology with low variation on thin silicon and 10-nm BOX,” in Proc. IEEE Int. SOI Conf., 2008, pp. 29–30. [37] R. Ranica, A. Villaret, P. Mazoyer, D. Lenoble, P. Candelier, F. Jacquet, P. Masson, R. Bouchakour, R. Foumel, J. P. Schoellkopf, and T. Skotnicki, “ A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-cost and High Density eDRAM,” in VLSI Symp. Tech. Dig., Jun. 2004, pp.128-129. [38] S. Okhonin, M. Nagoga, E. Carman, R. Begffa, E. Faraon,“New Generation of Z-RAM,”in IEDM Tech. Dig., Dec. 2007, pp. 925-928. [39] ISE TCAD 10.0, User’s Manual. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |