Responsive image
博碩士論文 etd-0630124-124904 詳細資訊
Title page for etd-0630124-124904
論文名稱
Title
(Ca, Sr, Ba, Mg)(Zr, Ti)O3 微波陶瓷的微觀結構與介電性能之研究
A study on the microstructures and dielectric properties of (Ca, Sr, Ba, Mg)(Zr, Ti)O3 microwave ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
185
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-06-20
繳交日期
Date of Submission
2024-07-30
關鍵字
Keywords
高熵陶瓷、C0G介電材料、微波介電材料、MLCC、無鉛介電材料
high-entropy ceramics, C0G dielectric material, microwave dielectric properties, MLCC, lead-free dielectric material
統計
Statistics
本論文已被瀏覽 109 次,被下載 7
The thesis/dissertation has been browsed 109 times, has been downloaded 7 times.
中文摘要
(Ca,Sr)ZrO3 陶瓷因高介電常數和低損耗特性,使其在C0G 型的MLCC中受到了廣泛的應用。其中,(Ca0.6Ba0.01Sr0.39)ZrO3 陶瓷在1450 ℃ 燒結下表現出良好的介電性能,包括在高頻 (9~10 GHz) 下量測的εr ∼ 28.38,tanδ ∼ 4.0×10-4,Q×f ∼ 22988 GHz,τf ∼ -58.3。故本研究以(Ca0.6Ba0.01Sr0.39)ZrO3 陶瓷為基礎,分別按(Ca0.6-xMgxSr0.39Ba0.01)ZrO3、(Ca0.6-xMgxSr0.39Ba0.01)(Zr1-xTix)O3 (X=0~0.05) 的比例摻雜MgO和MgTiO3,藉此探討Mg和Ti離子取代對CSBZ陶瓷密度、相結構、顯微結構和介電特性的影響。
研究結果顯示,摻雜MgTiO3之陶瓷中,存在Mg2+ 和Ti4+互相競爭至B位置之情形,而MgO的摻雜雖助燒效果明顯,卻易造成二次相增加。在1350 °C 燒結下,添加 1 mol% MgO 和 MgTiO3皆能改善(Ca0.6Ba0.01Sr0.39)ZrO3陶瓷的燒結緻密性並提升介電性能,其中,添加MgTiO3可更進一步降低燒結溫度,於1250 ℃燒結下,(Ca0.59Mg0.01Sr0.39Ba0.01)(Zr0.99Ti0.01)O3陶瓷的介電性能表現仍優於在1350 ℃ 下燒結之(Ca0.6Ba0.01Sr0.39)ZrO3 陶瓷,其介電性能包括在1 MHz下量測εᵣ ∼ 35.8,tanδ ∼ 2×10-4,IR ∼ 3.5×1013 Ω,以及高頻(8~10 GHz)下量測的εᵣ ∼ 34.8、Q×f ∼ 19697 GHz、和τf ∼ -25.1 ppm/C。
通過增加元素種類,提高系統亂度,可以有效降低(Ca,Sr,Ba,Mg)(Zr,Ti)O₃陶瓷的燒結溫度至1250℃,同時提升介電性能。該結果表明,熵工程是調整CSZ基材料介電性能的有效策略,具廣泛的應用前景,可為新型介電陶瓷材料的設計提供參考。

Abstract
(Ca,Sr)ZrO3 ceramics, known for their high dielectric constant and low loss characteristics, are widely used in C0G-type MLCCs. Among them, (Ca0.6Ba0.01Sr0.39)ZrO3 ceramics sintered at 1450°C exhibit excellent dielectric properties, including εᵣ ∼ 28.38, tanδ ∼ 4.0×10-4, Q×f ∼ 22988 GHz, τf ∼ -58.3 at high frequencies (9~10 GHz). Therefore, this study focuses on (Ca0.6Ba0.01Sr0.39)ZrO3 ceramics, examining the effects of doping with MgO and MgTiO3 in proportions of (Ca0.6-xMgxSr0.39Ba0.01)ZrO3 and (Ca0.6-xMgxSr0.39Ba0.01)(Zr1-xTix)O3 (X=0~0.05) on the density, phase structure, microstructure, and dielectric properties of CSBZ ceramics. H
The results indicate that in MgTiO3-doped ceramics, there is a competitive substitution of Mg²⁺ and Ti⁴⁺ at the B-site. While the addition of MgO significantly enhances the sintering process, it also tends to promote the formation of secondary phases. At a sintering temperature of 1350 °C, the inclusion of 1 mol% MgO and MgTiO3 improves the densification and dielectric properties of (Ca0.6Ba0.01Sr0.39)ZrO3 ceramics. Notably, the introduction of MgTiO3 further reduces the sintering temperature, resulting in (Ca0.59Mg0.01Sr0.39Ba0.01)(Zr0.99Ti0.01)O3 ceramics exhibiting superior dielectric performance at 1250 °C compared to (Ca0.6Ba0.01Sr0.39)ZrO3 sintered at 1350 °C. The dielectric properties at 1250 °C include εᵣ ∼ 35.8, tanδ ∼ 2×10⁻⁴ at 1 MHz, IR ∼ 3.5×10¹³ Ω, and at high frequencies (8–10 GHz), εᵣ ∼ 34.8, Q×f ∼ 19697 GHz, and τf ∼ -25.1 ppm/°C.
Increasing the variety of elements enhances the system's entropy, effectively reducing the sintering temperature of (Ca,Sr,Ba,Mg)(Zr,Ti)O₃ ceramics to 1250 °C, while simultaneously improving their dielectric properties. This study demonstrates that entropy engineering is a powerful approach for tuning the dielectric performance of CSZ-based materials, offering broad application potential and valuable insights for designing new dielectric ceramic materials.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xix
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 積層陶瓷電容 5
2.2 微波介電陶瓷材料 9
2.2.1 微波介電陶瓷的分類 9
2.2.2 評估微波介電陶瓷性能的主要參數 10
2.3 高熵陶瓷材料 12
2.3.1 高熵的定義 12
2.3.2 高熵效應 15
2.3.3 高熵陶瓷的設計 17
2.4 鈣鈦礦結構 20
2.5 M2+ZrO3 (M= Ca,Sr,Ba) 系統介紹 22
2.6 (Ca,Sr)ZrO3系統介紹 23
2.7 (Ca,Sr,Ba)ZrO3系統介紹 25
2.8 (Ca,Sr,Ba)ZrO3系統改質 27
2.8.1 摻雜Mg元素之介電性質介紹 27
2.8.2 摻雜Ti元素之介電性質介紹 28
2.9 缺陷化學 29
2.10 燒結理論 32
2.11 晶粒生長 35
第三章 實驗設計 36
3.1 實驗參數 36
3.1.1 實驗粉末介紹 36
3.1.2 粉末製備 37
3.1.3 陶瓷生胚製備 38
3.1.4 陶瓷燒結體製備及量測 39
3.1.5 燒結參數設定 41
3.1.6 電極固化參數 42
3.2 實驗設備介紹 43
3.2.1 球磨機 43
3.2.2 研磨拋光機 45
3.2.3 油壓式壓力機 46
3.2.4 自然對流烘箱 47
3.2.5 高溫燒結爐 48
3.2.6 噴霧造粒機 49
3.2.7 離子濺鍍機 51
3.3 材料特性分析 52
3.3.1 阿基米德密度分析 52
3.3.2 X光繞射儀 (X-ray diffraction, XRD) 53
3.3.3 場發射型掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscopy, FE-SEM) 55
3.3.4 能量散佈光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 56
3.3.5 介電性質分析 57
3.3.6 電容溫度係數量測(Temperature coefficient of capacitance, TCC) 59
3.3.7 高階三束型聚焦離子束顯微鏡 (Three-beams focused ion beam, TB-FIB) 60
3.3.8 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 61
第四章 結果與討論 62
4.1 改變MgO含量對 Ca0.6-xMgxSr0.39Ba0.01ZrO3陶瓷的影響 62
4.1.1 煆燒CMSBZ陶瓷之相結構分析 62
4.1.2 燒結CMSBZ陶瓷之相結構分析 64
4.1.3 CMSBZ陶瓷之密度分析 68
4.1.4 CMSBZ陶瓷之晶體結構分析 70
4.1.5 CMSBZ陶瓷之顯微結構分析 72
4.1.6 CMSBZ陶瓷之介電性質分析 83
4.1.7 CMSBZ陶瓷之高頻介電性質分析 92
4.2 改變MgTiO3含量對(Ca0.6-xMgxSr0.39Ba0.01)(Zr1-xTix)O3陶瓷的影響 95
4.2.1 煆燒CMSBZT陶瓷之相結構分析 95
4.2.2燒結CMSBZT陶瓷之相結構分析 97
4.2.3 CMSBZT陶瓷之密度分析 101
4.2.4 CMSBZT陶瓷之晶體結構分析 103
4.2.5 CMSBZT陶瓷之顯微結構分析 107
4.2.6 CMSBZT陶瓷之介電性質分析 116
4.2.7 CMSBZT陶瓷之高頻介電性質分析 127
4.3 綜合比較MgO和MgTiO3添加對 CSBZ陶瓷的影響 130
4.3.1 相結構分析 130
4.3.2 二次相分析 132
4.3.3 燒結密度分析 135
4.3.4 顯微結構分析 137
4.3.5 介電性質分析 140
第五章 結論 144
參考文獻 147
參考文獻 References
[1] Reaney, I. M., & Iddles, D. (2006). Microwave dielectric ceramics for resonators and filters in mobile phone networks. Journal of the American Ceramic Society, 89(7), 2063-2072.
[2] Liu, F., Guo, J., Zhao, L., Shen, X., & Yin, Y. (2018). A meta-surface decoupling method for two linear polarized antenna array in sub-6 GHz base station applications. IEEE Access, 7, 2759-2768.
[3] Huang, C. L., Tseng, Y. W., & Chen, J. Y. (2012). High-Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications. Journal of the European Ceramic Society, 32(12), 3287-3295.
[4] Wang, D., Siame, B., Zhang, S., Wang, G., Ju, X., Li, J., ... & Reaney, I. M. (2020). Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. Journal of the European Ceramic Society, 40(12), 4029-4034.
[5] Wakino, K., Nishikawa, T., Ishikawa, Y., & Tamura, H. (1990). Dielectric resonator materials and their applications for mobile communication systems. British ceramic. Transactions and journal, 89(2), 39-43.
[6] Ullah, U., Ali, W. F. F. W., Ain, M. F., Mahyuddin, N. M., & Ahmad, Z. A. (2015). Design of a novel dielectric resonator antenna using MgTiO3–CoTiO3 for wideband applications. Materials & Design, 85, 396-403.
[7] Gu, F. F., Chen, G. H., Li, X. Q., Yang, Y., Feng, Q., Yang, T., ... & Li, M. (2015). Structural and microwave dielectric properties of the (1− x)Li3NbO4− xCa0. 8Sr0. 2TiO3 thermally stable ceramics. Materials Chemistry and Physics, 167, 354-359.
[8] Xiong, Y., Xie, H., Rao, Z., Liu, L., Wang, Z., & Li, C. (2021). Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. Journal of Advanced Ceramics, 10, 1360-1370.
[9] Rost, C. M., Sachet, E., Borman, T., Moballegh, A., Dickey, E. C., Hou, D., ... & Maria, J. P. (2015). Entropy-stabilized oxides. Nature communications, 6(1), 8485.
[10] Harrington, T. J., Gild, J., Sarker, P., Toher, C., Rost, C. M., Dippo, O. F., ... & Vecchio, K. S. (2019). Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280.
[11] Wang, K., Chen, L., Xu, C., Zhang, W., Liu, Z., Wang, Y., ... & Zhou, Y. (2020). Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 39, 99-105.
[12] Zhang, H., Hedman, D., Feng, P., Han, G., & Akhtar, F. (2019). A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite. Dalton Transactions, 48(16), 5161-5167.
[13] Qin, M., Gild, J., Hu, C., Wang, H., Hoque, M. S. B., Braun, J. L., ... & Luo, J. (2020). Dual-phase high-entropy ultra-high temperature ceramics. Journal of the European Ceramic Society, 40(15), 5037-5050.
[14] Chen, H., Xiang, H., Dai, F. Z., Liu, J., & Zhou, Y. (2019). Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating. Journal of Materials Science & Technology, 35(10), 2404-2408.
[15] Lim, M., Rak, Z., Braun, J. L., Rost, C. M., Kotsonis, G. N., Hopkins, P. E., ... & Brenner, D. W. (2019). Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations. Journal of Applied Physics, 125(5).
[16] Dai, F. Z., Sun, Y., Wen, B., Xiang, H., & Zhou, Y. (2021). Temperature dependent thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: molecular dynamics simulation by deep learning potential. Journal of Materials Science & Technology, 72, 8-15.
[17] Fieandt, K., Paschalidou, E. M., Srinath, A., Soucek, P., Riekehr, L., Nyholm, L., & Lewin, E. (2020). Multi-component (Al, Cr, Nb, Y, Zr) N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 693, 137685.
[18] Hsueh, H. T., Shen, W. J., Tsai, M. H., & Yeh, J. W. (2012). Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100− xNx. Surface and Coatings Technology, 206(19-20), 4106-4112.
[19] Bérardan, D., Franger, S., Meena, A. K., & Dragoe, N. (2016). Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4(24), 9536-9541.
[20] Chang, H. W., Huang, P. K., Yeh, J. W., Davison, A., Tsau, C. H., & Yang, C. C. (2008). Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surface and Coatings Technology, 202(14), 3360-3366.
[21] Huang, P. K., & Yeh, J. W. (2010). Inhibition of grain coarsening up to 1000 C in (AlCrNbSiTiV)N superhard coatings. Scripta Materialia, 62(2), 105-108.
[22] Harrington, T. J., Gild, J., Sarker, P., Toher, C., Rost, C. M., Dippo, O. F., ... & Vecchio, K. S. (2019). Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 166, 271-280.
[23] Sure, J., Sri Maha Vishnu, D., Kim, H. K., & Schwandt, C. (2020). Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high‐entropy carbide powder. Angewandte Chemie, 132(29), 11928-11933.
[24] Liu, D., Wen, T., Ye, B., & Chu, Y. (2019). Synthesis of superfine high-entropy metal diboride powders. Scripta Materialia, 167, 110-114.
[25] Zhang, Y., Guo, W. M., Jiang, Z. B., Zhu, Q. Q., Sun, S. K., You, Y., ... & Lin, H. T. (2019). Dense high-entropy boride ceramics with ultra-high hardness. Scripta Materialia, 164, 135-139.
[26] Zhang, R. Z., Gucci, F., Zhu, H., Chen, K., & Reece, M. J. (2018). Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic chemistry, 57(20), 13027-13033.
[27] Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., ... & Luo, J. (2018). A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120.
[28] Sarkar, A., Djenadic, R., Wang, D., Hein, C., Kautenburger, R., Clemens, O., & Hahn, H. (2018). Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 38(5), 2318-2327.
[29] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., ... & Breitung, B. (2019). High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 31(26), 1806236.
[30] Wright, A. J., & Luo, J. (2020). A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective. Journal of Materials Science, 55(23), 9812-9827.
[31] Xiang, H., Xing, Y., Dai, F. Z., Wang, H., Su, L., Miao, L., ... & Zhou, Y. (2021). High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 10, 385-441.
[32] Chen, D., Zhu, X., Yang, X., Yan, N., Cui, Y., Lei, X., ... & Li, C. (2023). A review on structure–property relationships in dielectric ceramics using high‐entropy compositional strategies. Journal of the American Ceramic Society, 106(11), 6602-6616.
[33] Lee, Y. C., Shih, H. J., Wang, T. Y., & Pithan, C. (2024). Effect of Ba addition on the dielectric properties and microstructure of (Ca0.6Sr0.4)ZrO3. Journal of the European Ceramic Society, 44(10), 5659-5667.
[34] Li, L., Wang, M., Liu, Y., Chen, J., & Zhang, N. (2014). Decisive role of MgO addition in the ultra-broad temperature stability of multicomponent BaTiO3-based ceramics. Ceramics International, 40(1), 1105-1110.
[35] 葉明遠 (2019)。Ba1-xMgxSr1-yCayTiO3 高熵陶瓷特性之研究。屏東科技大學材料工程研究所學位論文,1-100。
[36] Chen, J. Y., & Huang, C. L. (2010). A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics. Materials Letters, 64(23), 2585-2588.
[37] Qu, J., Zagaceta, D., Zhang, W., & Zhu, Q. (2020). High dielectric ternary oxides from crystal structure prediction and high-throughput screening. Scientific Data, 7(1), 81.
[38] Gao, J., Liu, Y., Wang, Y., Hu, X., Yan, W., Ke, X., ... & Ren, X. (2017). Designing high dielectric permittivity material in barium titanate. The Journal of Physical Chemistry C, 121(24), 13106-13113.
[39] Lin, D., & Ling, Z. (2014). Effect of Titanium Substitution for Zirconium on Dielectric Properties of (Ca0.45Sr0.55)ZrO3 Ceramics. Journal of The Chinese Ceramic Society, 42(7), 821-825.
[40] Zaman, A., Uddin, S., Mehboob, N., Ali, A., Ahmad, A., & Bashir, K. (2021). Effect of Zr4+ on the structural and microwave dielectric properties of CaTiO3 ceramics. Ferroelectrics, 577(1), 143-152.
[41] Cheon, C. I., Kim, J. S., & Lee, H. G. (1998). The correlation between τɛ and the tolerance factor in (Sr, Ca)(Ti, Zr)O3 microwave dielectric ceramics. Journal of materials research, 13, 1107-1109.
[42] Qiu, S., Li, M., Shao, G., Wang, H., Zhu, J., Liu, W., ... & Zhang, R. (2021). (Ca, Sr, Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting. Journal of Materials Science & Technology, 65, 82-88.
[43] MoneyDJ 理財網 (2023)。積層陶瓷電容(MLCC)。MoneyDJ 理財網財經知識庫。
[44] Passive Components (2022). MLCC and Ceramic Capacitors. Passive Components.
[45] Raj Enterprise (no date). Multilayer Ceramic Capacitor (MLCC). Capacitor.
[46] 工作熊(2013)。多層陶瓷電容(MLCC)的基本原理與分類。電子製造工作狂人。
[47] Riekkinen, T. (2009). Fabrication and characterization of ferro-and piezoelectric multilayer devices for high frequency applications. Teknillinen korkeakoulu.
[48] Analog (2012). Ceramic Capacitors. Analog.
[49] Riekkinen, T. (2009). Fabrication and characterization of ferro-and piezoelectric multilayer devices for high frequency applications. Teknillinen korkeakoulu.
[50] Pan, M. J., & Randall, C. A. (2010). A brief introduction to ceramic capacitors. IEEE electrical insulation magazine, 26(3), 44-50.
[51] Art Pini (2020)。基礎知識:瞭解各類電容的特性,以便正確安全地使用。DigiKey。
[52] 陳英忠 (2022)。積層陶瓷電容製程技術。中山大學半導體及重點科技研究學院,課程講義。
[53] 宋進祥 (2006)。積層陶瓷電容器之可靠度評估與失效分析。國立成功大學工程科學系專班,碩士論文。
[54] Hummel, R. E. (2011). Electronic properties of materials. Springer Science & Business Media.
[55] 施贇舟 (2021) 。微波介質陶瓷研究現況及其在5G/6G下的發展趨勢。材料科學姑蘇實驗室。
[56] Shang, X., Zhang, F., Zhai, D., Wei, C., Liu, M., & Chen, J. (2021). Microwave transmission performance of mullite refractory ceramics over wide temperature range at 915 MHz and 2450 MHz. Materials Chemistry and Physics, 258, 123898.
[57] Scott, D. J. (2008). The discovery of new functional oxides using combinatorial techniques and advanced data-mining algorithms. University of London, University College London (United Kingdom).
[58] Le Berre, M., Capraro, S., Chatelon, J. P., Joisten, H., Rouiller, T., Bayard, B., ... & Hoffman, C. (2004). Materials, Integration and packaging Issues for High-Frequency Devices. In Mater. Res. Soc. Symp. Proc, 783, 151-156.
[59] 楊閔媞 (2009)。微波介電材料 La(Mg1/2Ti1/2)O3和(A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta) 之光譜性質研究Optical properities of La(Mg1/2Ti1/2)O3 and (A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta) 。國立臺灣師範大學物理研究所,碩士論文。
[60] Ohsato, H., Tsunooka, T., Kan, A., Ohishi, Y., Miyauchi, Y., Tohdo, Y., ... & Ogawa, H. (2004). Microwave-millimeterwave dielectric materials. Key Engineering Materials, 269, 195-198.
[61] Reaney, I. M., Wise, P., Ubic, R., Breeze, J., Alford, N. M., Iddles, D., ... & Price, T. J. P. M. A. (2001). On the temperature coefficient of resonant frequency in microwave dielectrics. Philosophical Magazine A, 81(2), 501-510.
[62] Jacob, M. V. (2005, November). Are the parameters Q0× f0, temperature coefficient of frequency and temperature coefficient of permittivity fundamental material constants? IEEE Region 10 Conference, 1-5.
[63] Spagnolini, U. (1997). Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Transactions on Geoscience and Remote sensing, 35(2), 454-463.
[64] 李言榮 (2013)。電子材料。清華大學出版社。
[65] 徐亮, 王紅潔& 蘇磊 (2021)。高熵陶瓷研究進展。宇航材料工藝。
[66] Anandkumar, M., & Trofimov, E. (2023). Synthesis, properties, and applications of high-entropy oxide ceramics: Current progress and future perspectives. Journal of Alloys and Compounds, 960, 170690.
[67] Zhang, R. Z., & Reece, M. J. (2019). Review of high entropy ceramics: design, synthesis, structure and properties. Journal of Materials Chemistry A, 7(39), 22148-22162.
[68] Chen, D., Zhu, X., Yang, X., Yan, N., Cui, Y., Lei, X., ... & Li, C. (2023). A review on structure–property relationships in dielectric ceramics using high‐entropy compositional strategies. Journal of the American Ceramic Society, 106(11), 6602-6616.
[69] Popovic, M. (2018). Research in entropy wonterland: a review of the entropy concept. Therm. Sci. 22 (2), 1163–1178.
[70] Xiang, L., & Hu, L. (2019). Research on knowledge innovation of supply chain enterprises from the perspective of the thermodynamic entropy theory. Thermal Science, 23(5 Part A), 2721-2729.
[71] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., & Brezesinski, T. (2019). H, Hahn, L. Velasco, B. Breitung. Adv. Mater, 31(26), e1806236.
[72] McCormack, S. J., & Navrotsky, A. (2021). Thermodynamics of high entropy oxides. Acta Materialia, 202, 1-21.
[73] Murty, B. S., Yeh, J. W., Ranganathan, S., & Bhattacharjee, P. P. (2019). High-entropy alloys. Elsevier.
[74] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303.
[75] Dippo, O. F., & Vecchio, K. S. (2021). A universal configurational entropy metric for high-entropy materials. Scripta Materialia, 201, 113974.
[76] Jia, H., Li, C., Chen, G., Li, H., Li, S., An, L., & Chen, K. (2022). Design and synthesis of high-entropy pyrochlore ceramics based on valence combination. Journal of the European Ceramic Society, 42(13), 5973-5983.
[77] Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362.
[78] Yeh, J. W., Chen, Y. L., Lin, S. J., & Chen, S. K. (2007). High-entropy alloys–a new era of exploitation. Materials science forum, Trans Tech Publications Ltd, 560, 1-9.
[79] McCormack, S. J., & Navrotsky, A. (2021). Thermodynamics of high entropy oxides. Acta Materialia, 202, 1-21.
[80] Sarkar, A., Breitung, B., & Hahn, H. (2020). High entropy oxides: The role of entropy, enthalpy and synergy. Scripta Materialia, 187, 43-48.
[81] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303.
[82] Akrami, S., Edalati, P., Fuji, M., & Edalati, K. (2021). High-entropy ceramics: Review of principles, production and applications. Materials Science and Engineering: R: Reports, 146, 100644.
[83] Wang, K., Chen, L., Xu, C., Zhang, W., Liu, Z., Wang, Y., ... & Zhou, Y. (2020). Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. Journal of Materials Science & Technology, 39, 99-105.
[84] Wei, G. A. O., Zhuhuan, Y. U., Yawen, Y. A. N., Xiaohui, W. A. N. G., Xuliang, L. I. U., & Wei, D. U. (2023). Effect of Cr on microstructure and mechanical properties of FeCoNiAlCrx high entropy alloys. Journal of Materials Engineering, 51(2), 91-97.
[85] Zhou, Y. J., Zhang, Y., Wang, Y. L., & Chen, G. L. (2007). Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 90(18).
[86] Sarkar, A., Wang, Q., Schiele, A., Chellali, M. R., Bhattacharya, S. S., Wang, D., & Brezesinski, T. (2019). H, Hahn, L. Velasco, B. Breitung. Adv. Mater, 31(26), e1806236.
[87] Yeh, J. W., Lin, S. J., Chin, T. S., Gan, J. Y., Chen, S. K., Shun, T. T., ... & Chou, S. Y. (2004). Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 35, 2533-2536.
[88] Musicó, B. L., Gilbert, D., Ward, T. Z., Page, K., George, E., Yan, J., ... & Keppens, V. (2020). The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Materials, 8(4).
[89] 王雲平, 劉世民 & 董闖 (2024)。高熵陶瓷材料研究進展及挑戰。Journal of Materials Engineering/Cailiao Gongcheng, 52(1).
[90] 葉均蔚。四大核心效應 亂度中的哲學。國立清華大學圖書館。
[91] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303.
[92] Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta materialia, 122, 448-511.
[93] Wen, T., Liu, H., Ye, B., Liu, D., & Chu, Y. (2020). High-entropy alumino-silicides: a novel class of high-entropy ceramics. Sci China Mater, 63(2), 300-6.
[94] Jones, D. R. H. (1996). Engineering materials 1: an introduction to their properties and applications. Butterworth-Heinemann.
[95] Callister, W. D., Rethwisch, D. G., Blicblau, A., Bruggeman, K., Cortie, M., Long, J., ... & Mitchell, R. (2007). Materials science and engineering: an introduction, 7, 665-715.
[96] Hull, D., & Bacon, D. J. (2011). Introduction to dislocations, Elsevier, 37.
[97] Cahn, R. W., & Haasen, P. (Eds.). (1996). Physical metallurgy, Elsevier, 1.
[98] Tang, L., Li, Z., Chen, K., Li, C., Zhang, X., & An, L. (2021). High‐entropy oxides based on valence combinations: design and practice. Journal of the American Ceramic Society, 104(5), 1953-1958.
[99] Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J. P., ... & Curtarolo, S. (2018). High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature communications, 9(1), 4980.
[100] Wen, T., Ye, B., Liu, H., Ning, S., Wang, C. Z., & Chu, Y. (2020). Formation criterion for binary metal diboride solid solutions established through combinatorial methods. Journal of the American Ceramic Society, 103(5), 3338-3348.
[101] Bartel, C. J., Sutton, C., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., & Scheffler, M. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Science advances, 5(2), eaav0693.
[102] 林中冠,賴敏良,李君婷 (2018)。新世代鈣鈦礦材料: 合成、光電特性及應用。物理雙月刊。
[103] Oshchapovskii, V. V. (2012). A new method of determination of radii of ions with arbitrary effective charges. Russian Journal of Inorganic Chemistry, 57, 211-218.
[104] Li, Z., Yang, M., Park, J. S., Wei, S. H., Berry, J. J., & Zhu, K. (2016). Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292.
[105] Bullis, K. (2013). A material that could make solar power" dirt cheap.
[106] Li, H., Li, S., Wang, Y., Sarvari, H., Zhang, P., Wang, M., & Chen, Z. (2016). A modified sequential deposition method for fabrication of perovskite solar cells. Solar Energy, 126, 243-251.
[107] Cartwright, J. (2013). A Flat-Out Major Advance for an Emerging Solar Cell Technology. Science Now.
[108] Stranks, S. D., & Snaith, H. J. (2015). Metal-halide perovskites for photovoltaic and light-emitting devices. Nature nanotechnology, 10(5), 391-402.
[109] Dereń, P. J., Bednarkiewicz, A., Goldner, P., & Guillot-Noël, O. (2008). Laser action in LaAlO3: Nd3+ single crystal. Journal of Applied Physics, 103(4).
[110] Yu-De Li, J. M. C., & Lee, Y. C. (2018). Dielectric properties and microstructures of (CaxSr1-x)ZrO3 ceramics. Journal of Ceramic Processing Research, 19(6), 461-466.
[111] Prasanth, C. S., Kumar, H. P., Pazhani, R., Solomon, S., & Thomas, J. K. (2008). Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics. Journal of alloys and compounds, 464(1-2), 306-309.
[112] Yang, L., Liu, Y., Zhang, W., Zhou, G., Jiang, D., Chen, H., ... & Liu, B. (2020). High‐temperature mechanical and thermal properties of Ca1−xSrxZrO3 solid solutions. Journal of the American Ceramic Society, 103(3), 1992-2000.
[113] Joseph, J., Sivasubramaniam, V., Vimala, T. M., & Murthy, V. R. K. (1999). Structural study on Ca0.6Sr0.4ZrO3. Japanese journal of applied physics, 38(2R), 822.
[114] Sp, W., & Jh, L. (2011). Mg-substituted ZnNb2O6–TiO2 composite ceramics for RF/microwaves ceramic capacitors. Journal of Alloys and Compounds, 509(31), 8126-8129.
[115] Chen, C., Peng, Z., Xie, L., Bi, K., & Fu, X. (2020). Microwave dielectric properties of novel (1− x)MgTiO3–xCa0.5Sr0.5TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 31, 13696-13703.
[116] Zheng, J., Liu, Y., Tao, B., Zhang, Q., Wu, H., & Zhang, X. (2021). Crystal structure and optimised microwave dielectric properties of Ce2(Zr1-xTix)3(MoO4)9 solid solutions. Ceramics International, 47(4), 5624-5630.
[117] Huang, F., Su, H., Zhang, Q., Wu, X., Jing, Y., Li, Y., & Tang, X. (2022). The structural characteristics and microwave dielectric properties of Ti4+ doped CaMgSi2O6 ceramics. Ceramics International, 48(22), 33615-33623.
[118] 魏炯權 (2012)。電子陶瓷材料。全華圖書股份有限公司,第6-7~6-11 頁。
[119] 陸棟等 (2010)。固體物理學。
[120] DeHoff, R. (2006). Thermodynamics in materials science. CRC Press.
[121] Callister, W. D., Rethwisch, D. G., Blicblau, A., Bruggeman, K., Cortie, M., Long, J., ... & Mitchell, R. (2007). Materials science and engineering: an introduction, 7, 665-715.
[122] William F.. Smith, & Hashemi, J. (2006). Foundations of materials science and engineering. Mcgraw-Hill Publishing.
[123] Kröger, F. A., & Vink, H. J. (1958). Relations between the concentrations of imperfections in solids. Journal of Physics and Chemistry of Solids, 5(3), 208-223.
[124] Brook, R. J. (Ed.). (2012). Concise encyclopedia of advanced ceramic materials. Elsevier.
[125] German, R. M., Suri, P., & Park, S. J. (2009). Liquid phase sintering. Journal of materials science, 44, 1-39.
[126] Pomeroy, M. (Ed.). (2021). Encyclopedia of materials: technical ceramics and glasses. Elsevier.
[127] 李昱德 (2020)。低溫燒結氧化鋁陶瓷吸盤之研究。國立屏東科技大學材料工程研究所,碩士論文。
[128] German, R. M., Suri, P., & Park, S. J. (2009). Liquid phase sintering. Journal of materials science, 44(1), 1-39.
[129] Park, H. H., Cho, S. J., & Yoon, D. N. (1984). Pore filling process in liquid phase sintering. Metallurgical and Materials Transactions A, 15, 1075-1080.
[130] Sakuma, T. (1996, March). Grain growth in ceramics. Materials Science Forum, 204, 109-120.
[131] Hamdi, H., Abedi, H. R., & Zhang, Y. (2023). A review study on thermal stability of high entropy alloys: Normal/abnormal resistance of grain growth. Journal of Alloys and Compounds, 960, 170826.
[132] Liu, S., Li, Q., Xie, G., Li, L., & Xiao, H. (2016). Effect of grinding time on the particle characteristics of glass powder. Powder Technology, 295, 133-141.
[133] Gavrilov, D., Vinogradov, O., & Shaw, W. J. (1999). Simulation of grinding in a shaker ball mill. Powder technology, 101(1), 63-72.
[134] Hixon, L., Prior, M., Prem, H., & Van Cleef, J. (1990). Sizing materials by crushing and grinding. Chemical engineering, 97(11), 94.
[135] Lin, X., Xin, X., Shan, X., Yang, R., Lei, Z., & Sun, L. (2019). Optimal parameter ranges of material removal depth of abrasive cloth wheel polishing based on sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 105, 5165-5179.
[136] 三十一號木工廠 (2019)。各類砂紙、砂布的號數與使用建議。原材料知識,裝潢知識家。
[137] Chinn, R. E. (2002). Ceramography: preparation and analysis of ceramic microstructures. ASM international.
[138] Rudnik, L. R. (2005). Synthetics, Mineral Oils, and Bio-Based Lubricants. Boca Raton.
[139] Smolka, J., Bulinski, Z., & Nowak, A. J. (2013). The experimental validation of a CFD model for a heating oven with natural air circulation. Applied thermal engineering, 54(2), 387-398.
[140] Keppeler, M., Reichert, H. G., Broadley, J. M., Thurn, G., Wiedmann, I., & Aldinger, F. (1998). High temperature mechanical behaviour of liquid phase sintered silicon carbide. Journal of the European Ceramic Society, 18(5), 521-526.
[141] Shuaib, M. (1995). The University of Manchester (United Kingdom) ProQuest Dissertations & Theses,  U482586.
[142] 汪建民 (1994)。陶瓷技術手冊。中華民國產業科技發展協進會。
[143] Masters, K. (1985). Spray drying handbook.
[144] Jr Walker, W. J., Reed, J. S., & Verma, S. K. (1999). Influence of granule character on strength and Weibull modulus of sintered alumina. Journal of the American Ceramic Society, 82(1), 50-56.
[145] Lukasiewicz, S. J. (1989). Spray‐drying ceramic powders. Journal of the American Ceramic Society, 72(4), 617-624.
[146] Frey, R. G., & Halloran, J. W. (1984). Compaction behavior of spray‐dried alumina. Journal of the American ceramic Society, 67(3), 199-203.
[147] Clay, C. S., & Peace, G. W. (1981). Ion beam sputtering: an improved method of metal coating SEM samples and shadowing CTEM samples. Journal of Microscopy, 123(1), 25-34.
[148] Bunaciu, A. A., UdriŞTioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), 289-299.
[149] Abbaschian, R., Abbaschian, L., & Reed-Hill, R. E. (2010). Physical metallurgy principles, 200.
[150] McMurdie, H. F. (1973). Standard Data for the Identification of Phases By X-Ray Diffraction. Advances in X-Ray Analysis, 17, 20-31.
[151] Jenkins, R., & Holomany, M. (1987). “PC-PDF”: A Search/Display System Utilizing the CD-ROM and the Complete Powder Diffraction File. Powder Diffraction, 2(4), 215-219.
[152] 羅聖全 (2013)。掃描式電子顯微鏡(SEM)。科學研習,第 52-2期,第 2~4 頁。
[153] Akhtar, K., Khan, S. A., Khan, S. B., & Asiri, A. M. (2018). Scanning electron microscopy: Principle and applications in nanomaterials characterization. Springer International Publishing, 113-145.
[154] TEM electronic components, LCR-8101G GW INSTEKG
[155] Keysight,高電阻計(DC),4339B
[156] Voltmer, D. (2007). Fundamentals of electromagnetics 1: Internal behavior of lumped elements. Morgan & Claypool Publishers.
[157] Focused Ion Beam (FIB) and Three-Beam FIB (TB-FIB) Microscopy: A Comprehensive Review
[158] Orloff, J. (1991). Focused ion beams. Scientific American, 265(4), 96-101.
[159] Forbest, R. G. (1997). Understanding how the liquid-metal ion source works. Vacuum, 48(1), 85-97.
[160] Lei, C. (2012). Transmission electron microscopy. Nanotechnology Research Methods for Foods and Bioproducts, 127-144.
[161] Javed, Y., Ali, K., Akhtar, K., Jawaria, Hussain, M. I., Ahmad, G., & Arif, T. (2018). TEM for atomic-scale study: Fundamental, instrumentation, and applications in nanotechnology. Handbook of materials characterization, 147-216.
[162] Lee, Y. C., Pithan, C., Lee, H. Y., Yeh, M. Y., & Hennings, D. F. (2022). Microstructural and Dielectric Properties of Ba0.45Mg0.05Sr0.5-XCaxTiO3 High Entropy Ceramics. Available at SSRN 4140207.
[163] Jayasankar, K., Pandey, A., Mishra, B. K., & Das, S. (2016). Evaluation of microstructural parameters of nanocrystalline Y2O3 by X-ray diffraction peak broadening analysis. Materials Chemistry and Physics, 171, 195-200.
[164] Atteraas, L. (1967) .  Lehigh university proquest dissertations & theses, 6714927.
[165] Koops, C. G. (1951). On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical review, 83(1), 121.
[166] Yager, W. A. (1936). The distribution of relaxation times in typical dielectrics. Journal of Applied Physics, 7(12), 434-450.
[167] Liou, J. W., & Chiou, B. S. (1997). Dielectric characteristics of doped Ba1− xSrxTiO3 at the paraelectric state. Materials Chemistry and Physics, 51(1), 59-63.
[168] Zhuang, G., Chen, Y., Zhuang, Z., Yu, Y., & Yu, J. (2020). Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Sci. China Mater, 63(11), 2089-2118.
[169] Yue, Y., Ke, X., & Xuelu, M. (2023). Catalytic mechanism of oxygen vacancy defects in metal oxides. Progress in Chemistry, 35(4), 543.
[170] Kim, H. T., Nahm, S., Byun, J. D., & Kim, Y. (1999). Low‐Fired (Zn, Mg) TiO3 Microwave Dielectrics. Journal of the American Ceramic Society, 82(12), 3476-3480.
[171] 李俊德 (2007)。複合鈣鈦礦型結構之鈮氧化物陶瓷的結構與微波介電性質之關係。國立成功大學資源工程學系碩博士班,學術論文。
[172] Lin, Y., Feng, D. Y., Gao, M., Ji, Y. D., Jin, L. B., Yao, G., ... & Chen, C. L. (2015). Reducing dielectric loss in CaCu3Ti4O12 thin films by high-pressure oxygen annealing. Journal of Materials Chemistry C, 3(14), 3438-3444.
[173] Breeze, J. D., Perkins, J. M., McComb, D. W., & Alford, N. M. (2009). Do grain boundaries affect microwave dielectric loss in oxides? Journal of the American Ceramic Society, 92(3), 671-674.
[174] Dastagiri, S., Pakardin, G., Babu, T. A., Lakshmaiah, M. V., & Naidu, K. C. B. (2021). Colossal dielectric behavior in Al0.8GdyLa0.2-yTiO3 (y=0.01–0.04) nanostructures. Journal of Materials Science: Materials in Electronics, 32, 8017-8032.
[175] Ge, L., Zhou, W., Ran, R., Liu, S., Shao, Z., Jin, W., & Xu, N. (2007). Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane. Journal of Membrane Science, 306(1-2), 318-328.
[176] 張益豪 (2008)。xSr(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Ta2/3)O3微波介電材料的光譜研究。國立臺灣師範大學物理學系,學術論文。
[177] Glazer, A. M. (1972). The classification of tilted octahedra in perovskites. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 28(11), 3384-3392.
[178] Chen, D., Zhu, X., Yang, X., Yan, N., Cui, Y., Lei, X., ... & Li, C. (2023). A review on structure–property relationships in dielectric ceramics using high‐entropy compositional strategies. Journal of the American Ceramic Society, 106(11), 6602-6616.
[179] Zuo, C., Yang, S., Cao, Z., Jie, W., & Wei, X. (2023). Combustion synthesis of high-performance high-entropy dielectric ceramics for energy storage applications. Ceramics International, 49(15), 25486-25494.
[180] Azad, A. M. (2001). Fine-tuning of temperature coefficients of capacitance (TCC) and dielectric constant (TCK) of Mg2SnO4 via second phase addition. Journal of materials science, 36, 3909-3917.
[181] Sivasubramanian, V., Rao, M. V., Murthy, V. R. K., & Viswanathan, B. (1995). Influence of structure on the microwave dielectric properties of Ti substituted (Ca, Sr) ZrO3 ceramics. Ferroelectrics, 173(1), 233-242.
[182] Choi, G. K., Kim, J. R., Yoon, S. H., & Hong, K. S. (2007). Microwave dielectric properties of scheelite (A= Ca, Sr, Ba) and wolframite (A= Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society, 27(8-9), 3063-3067.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code