論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
具高碼率與低錯誤地板使用稀疏完美高斯整數序列的多載波分碼多重接取架構 MC-CDMA Schemes Using Sparse Perfect Gaussian Integer Sequences with High Rates and Low Error Floors |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
73 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2019-07-25 |
繳交日期 Date of Submission |
2019-08-02 |
關鍵字 Keywords |
低密度奇偶校驗碼、空時編碼、位元交織編碼調變、多重接取干擾、稀疏完美高斯整數序列、多載波分碼多重接取、碼簿設計 Space time code(STC), multi-carrier code division multiple access (MC-CDMA), multiple access interference (MAI), sparse perfect Gaussian integer sequence (SPGIS), Codebook design, low-density parity-check (LDPC) code, interference cancellation (IC), bit-interleaved coded modulation(BICM) |
||
統計 Statistics |
本論文已被瀏覽 5657 次,被下載 0 次 The thesis/dissertation has been browsed 5657 times, has been downloaded 0 times. |
中文摘要 |
在上鏈傳輸的多載波分碼多重接取 (Multi-Carrier Code Division Multiple Access, MC-CDMA) 系統,訊號會受到頻率選擇性衰減通道 (Frequency-Selective Fading Channel) 影響,導致使用者的展頻碼彼此間失去正交性,產生嚴重的多重接取干擾 (Multiple Access Interference, MAI)。以前有學者提出降低吞吐量可以避免MAI效應的MC-CDMA系統,其中展頻碼及反離散傅立葉轉換矩陣結合而成的轉換矩陣,此矩陣是由稀疏完美高斯整數序列 (Sparse Perfect Gaussian Integer Sequences) 建立而成,這轉換矩陣可以降低傳輸端及接收端的運算複雜度,以及降低峰均功率比 (Peak-to-Average Power Ratio)。本論文使用此系統架構並不降低吞吐量以及解決MAI的問題,我們接收端使用機率概念的干擾消除演算法 (Probability Interference Cancellation, PbIC) 來解決MAI的問題。我們把MC-CDMA系統加入碼簿 (Codebook) 來取代原本調變方式,進而提升此系統效能。我們提供了兩種碼簿設計方式,分別為交錯碼簿及塊狀碼簿,並且提供由位元交織編碼調變 (Bit-Interleaved Coded Modulation, BICM) 及空時編碼 (Space Time Code, STC) 概念為設計準則去判斷碼簿的好壞,且利用低密度奇偶校驗 (Low-Density Parity-Check, LDPC) 碼去展示此系統的極限效能。 |
Abstract |
Multi-carrier code division multiple access (MC-CDMA) occurs serious multiple access interference (MAI) in uplink transmission with frequency-selective fading channel because the spreading codes lose the orthogonality. A Novel MC-CDMA is proposed in the past study to avoid MAI by properly assigned signal location per user and employing the sparse perfect Gaussian integer sequences (SPGISs) as time-domain spreading codes which are combined with frequency-domain spreading codes and inverse discrete Fourier transform. In this work, we propose the probability based interference cancellation (PbIC) algorithm to mitigate the MAI term when the number of users are full. Moreover, we apply codebook as our modulation to enhance the system performance. We produce two kinds of codebook design and provide two criteria to distinguish between good and bad codebook. We apply the low-density parity-check (LDPC) code as our outer code to demonstrate the system ultimate performance. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖次 vii 表次 ix 第一章 導論 1 1.1 研究動機與貢獻 4 1.2 論文架構 4 第二章 系統模型 5 2.1 正交分頻多工之基本架構 5 2.2 多載波分碼多重接取系統之基本架構 10 第三章 轉換矩陣之設計 12 3.1 展頻碼矩陣和轉換矩陣 12 3.2 使用稀疏完美高斯整數序列建立轉換矩陣之方法 13 第四章 預編碼多載波分碼多重接取上鏈系統使用干擾消除演算法 16 4.1 傳輸端架構 16 4.2 接收端架構 18 4.3 利用機率概念消除用戶之間的干擾演算法 21 4.3.1 分析子載波上的干擾 21 4.3.2 機率概念干擾消除演算法 25 第五章 傳輸端碼簿設計 31 5.1 碼簿設計要點 31 5.2 碼簿設計 32 5.2.1 交錯碼簿 32 5.2.2 塊狀碼簿 32 5.3 判別碼簿好壞的準則 34 5.3.1 使用BICM概念的設計準則 34 5.3.2 使用STC概念的設計準則 36 第六章 預編碼多載波分碼多重接取系統應用碼簿傳輸 40 6.1 MC-CDMA應用碼簿的傳輸端 40 6.1.1 交錯碼簿之編碼調變 40 6.1.2 塊狀碼簿之編碼調變 42 6.2 MC-CDMA應用碼簿的接收端 42 6.3 前人的錯誤修正 44 第七章 模擬結果與討論 45 第八章 結論 52 參考文獻 53 中英對照表 58 縮寫對照表 62 |
參考文獻 References |
[1] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication, 1st ed. Addison Wesley, 1995. [2] S. Hara and R. Prasad, “DS-CDMA, MC-CDMA and MT-CDMA for mobile multi-media communications,” in Proc. Veh. Technol. Conf., Atlanta, GA, vol. 2, no. 5, pp. 1106–1110, Apr. 1996. [3] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126–133, Dec. 1997. [4] A. C. McCormick and E. A. AI-Susa, “Multicarrier CDMA for future generation mobile communication,” IEEE Electron. & Commun. Eng. J., vol. 14, no. 5, pp. 52–60, Apr. 2002. [5] Lie-Liang Yang and L. Hanzo, “Performance of broadband multicarrier DS-CDMA using space-time spreading-assisted transmit diversity,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 885–894, May 2005. [6] S. Hara and R. Prasad, “Design and performance of multicarrier CDMA system in frequency-selective Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 48, no. 5, pp. 1584–1595, Sep. 1999. [7] C. W. You and D. S. Hong, “Multicarrier CDMA systems using time-domain and frequency-domain spreading codes,” IEEE Trans. Commun., vol. 51, no. 1, pp. 17–21, Jan. 2003. [8] M. Guenach and H. Steendam, “Performance evaluation and parameter optimization of MC-CDMA,” IEEE Trans. Veh. Technol., vol. 56, no. 3, pp. 1165–1175, May 2007. [9] G. Manglani and A. K. Chaturvedi, “Multi-tone CDMA design for arbitrary frequency offsets using orthogonal code multiplexing at the transmitter and a tunable receiver,” IET Commun., vol. 5, no. 15, pp. 2157–2166, Oct. 2011. [10] K. L. Baum, T. A. Thomas, F. W. Vook, and V. Nangia, “Cyclic-prefix CDMA: an improved transmission method for broadband DS-CDMA cellular systems,” in Proc. WCNC, Orlando, USA, pp. 183–188, Mar. 2002. [11] Hongbing Cheng, Meng Ma, and Bingli Jiao, “On the design of comb spectrum code for multiple access scheme,” IEEE Trans. Commun., vol. 57, no. 3, pp. 754–763, Mar. 2009. [12] H. Cheng, M. Ma, and B. Jiao, “A novel type of code design for the CP-CDMA system: Comb spectrum grouped codes,” in Proc. IEEE 60th Veh. Technol. Conf., Los Angeles, CA, vol. 1, pp. 729–733, Sep. 2004. [13] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 8, no. 6, pp. 381–382, Oct. 1962. [14] C. P. Li and W. C. Huang, “A constructive representation for the Fourier dual of the zadoff–chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221–4224, Nov. 2007. [15] S. H. Wang, C. P. Li, K. C. Lee, and H. J. Su, “A novel low-complexity precoded OFDM system with reduced PAPR,” IEEE Trans. Signal Process., vol. 63, no. 6, pp. 1366–1376, Mar. 2015. [16] W. Hu, S. Wang, and C. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074-6079, Nov. 2012. [17] S. Wang, C. Li, H. Chang, and C. Lee, “A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Transs. Commun., vol. 64, no. 1, pp. 365-376, Jan. 2016. [18] S. H. Wang and C. P. Li, “Novel MC-CDMA system using Fourier duals of sparse perfect Gaussian integer sequences,” in Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, pp. 1–6, May 2016. [19] A. Duel-Hallen, “A family of multiuser decision-feedback detectors for asynchronous code-division multiple-access channels,” IEEE Trans. Commun., vol. 43, no. 2, pp. 421–434, Feb. 1995. [20] Z. Zvonar and D. Brady, “Linear multipath-decorrelating receivers for CDMA frequency-selective fading channels,” IEEE Trans. Commun., vol. 44, no. 6, pp. 650–653, June 1996. [21] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Commun. Mag., vol. 34, no. 10, pp. 124–136, Oct. 1996. [22] S. Verdú and Multiuser Detection, 1st ed. New York: Cambridge University Press, 1998. [23] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Lagrange/vandermonde MUI eliminating user codes for quasi-synchronous CDMA in unknown multipath,” IEEE Trans. Signal Process., vol. 48, no. 7, pp. 2057–2073, July 2000. [24] M. F. Madkour, S. C. Gupta, and Y. P. E. Wang, “Successive interference cancellation algorithms for downlink W-CDMA communications,” IEEE Trans. Commun., vol. 1, no. 1, pp. 169–177, Jan. 2002. [25] S. H. Tsai, Y. P. Lin, and C. C. J. Kuo, “MAI-free MC-CDMA systems based on Hadamard-Walsh codes,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3166–3179, Aug. 2006. [26] P. Li, R. C. de Lamare, and R. Fa, “Multiple feedback successive interference cancellation detection for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2434–2439, Aug. 2011. [27] Y.-P. Lin, S.-M Phoong, and P. P. Vaidyanathan, Filter bank transceivers for OFDM and DMT systems. Cambridge University Press, USA, Nov. 2010. [28] T. Lakshmi Narasimhan, P. Raviteja, and A. Chockalingam, “Generalized spatial modulation in large-scale multiuser MIMO systems,” in IEEE Trans. on Wireless Commu., vol. 14, no. 7, pp. 3764–3779, July 2015. [29] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation”, IEEE Trans. on Inform. Theory, vol. 44, no. 3, pp. 927–946, May 1998. [30] X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding and 8PSK modulation,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1250–1257, Aug. 2002. [31] A. Dejonghe and L. Vandendorpe, “Bounding the error-floor of turbo-equalized BICM transmission over quasi-static frequency-selective Rayleigh fading channels,” 2014 IEEE International Conference Commun., Paris, France, vol. 2, pp.727–731, June 2004. [32] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing error probabilities over fading channels: a unified approach,” European Trans. on Commun., vol. 9, no. 1, pp. 15–25, Jan.-Feb. 1998. [33] M.K. Simon and M.-S. Alouini, Digital communications over fading channels: a unified approach to performance analysis, Wiley, New-York, 2000. [34] Jinhong Yuan, Zhuo Chen, B. Vucetic, and W. Firmanto, “Performance and design of space-time coding in fading channels, ” in IEEE Trans. Commun., vol. 51, no. 12, pp. 1991–1996, Dec. 2003. [35] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for high-data-rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |