論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
探討廢棄寶特瓶合成金屬有機框架吸附廢水中染料之機制研究 Exploring the mechanism of the synthesis of metal organic frameworks from discarded plastic bottles to adsorb dyes in wastewater |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
78 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2022-07-01 |
繳交日期 Date of Submission |
2022-08-02 |
關鍵字 Keywords |
染料廢水、後修飾反應、金屬有機框架、剛果紅染料、超聲波輔助吸附 Dye wastewater, Congo red dye, Metal organic framework, Sono-assisted adsorption, Post synthetic modification |
||
統計 Statistics |
本論文已被瀏覽 159 次,被下載 186 次 The thesis/dissertation has been browsed 159 times, has been downloaded 186 times. |
中文摘要 |
染料廢水的來源和污染物成分非常複雜且難以分離,含有的染料種類繁多,廢水毒性也會對生活環境和人類健康造成很大的危害。另外染料廢水水質變化大、色度高容易造成水體外觀不佳,還有pH值波動大、可降解性差、組成成分變化混亂、總體水量大且濃度高等因素,造成較難以通例方法進行有效的處理。本研究利用廢棄保特瓶製做出4種類型的金屬有機框架,並透過後修飾反應,將原本未带有官能團的PET_MIL-101(Cr)修飾硝基(-NO2)、胺基(-NH2)及羥基(-OH)到MOF上,分別是PET_NO2-MIL-101(Cr)、PET_NH2-MIL-101(Cr)、PET_OH-MIL-101(Cr):共計4種MOF,以達到廢棄物資源化的目的。再結合超聲波輔助吸附技術處理剛果紅染料,另外也會利用搖瓶機的輔助吸附方式進行實驗,以探討兩者間的差異。研究探討分為三部分,第一部分為4種MOF材料鑑定,第二部分為吸附劑與吸附質之間的吸附特性分析,包含pH值效應及接觸時間,以探討等溫吸附模式及吸附動力學模型,第三部分為超聲波輔助吸附與搖瓶機吸附方式的探討。研究結果指出,4種MOF吸附剛果紅染料時,皆在酸性條件下有較佳的吸附效果。在使用超聲波或搖瓶機吸附剛果紅染料時,4種MOF都是遵循擬二階吸附動力學模型及屬於Langmuir等溫吸附模式。在超聲波輔助吸附時,吸附效果最佳的MOF是PET_MIL-101(Cr),在搖瓶機輔助吸附時,吸附效果最佳的MOF是PET_NH2-MIL-101(Cr)。其中超聲波能夠縮短吸附平衡的時間,超聲波輔助吸附通常在5~10分鐘內達到吸附平衡狀態,而搖瓶機需要120分鐘才能達成。另外在實驗過程中發現PET_NH2-MIL-101(Cr)在製做完成後,會因為久放未使用,而失去原有良好的吸附能力。PET_OH-MIL-101(Cr)則是在製做過程中,產量不穩定且非常少,吸附效果也不穩定。 |
Abstract |
The source and pollutant components of dye wastewater are very complex and difficult to separate, and contain a wide variety of dyes. In this study, four types of Metal organic frameworks were maded from waste plastic bottles, including PET_MIL-101(Cr), PET_NO2-MIL-101(Cr), PET_NH2-MIL-101(Cr), and PET_OH-MIL-101(Cr). Combined with the Sono-assisted adsorption to remove Congo red dye, and also will use the assisted adsorption method of the shaker to conduct experiments to explore the difference between the two. The results indicated that when the four MOFs adsorbed Congo red dyes, they all had better adsorption effects under acidic conditions. When using Sono-assisted adsorption or shaker to adsorb Congo red dye, the four MOFs all followed the pseudo-second-order adsorption kinetic model and belonged to the Langmuir isotherm adsorption mode. In the Sono-assisted adsorption, the MOF with the best adsorption effect was PET_MIL-101(Cr), and in the shaker-assisted adsorption, the MOF with the best adsorption effect was PET_NH2-MIL-101(Cr). Among them, Sono-assisted adsorption can shorten the time of adsorption equilibrium. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章、緒論 1 1.1研究背景 1 1.2研究目的 2 1.3研究動機 2 1.4研究內容與架構 3 第二章、文獻回顧 4 2.1染料毒性 4 2.2廢水中染料的去除方式 4 2.3吸附劑種類 6 2.4吸附方式 7 2.5金屬有機框架 8 2.6影響吸附性能的因素 10 第三章、實驗方法 14 3.1實驗方法及流程 14 3.2材料及儀器設備 16 3.3金屬有機框架合成與後修飾 18 3.3.1第一種MOF合成方式與純化 19 3.3.2第二~四種MOF合成方式與純化 20 3.3.3計算MOF轉化率 21 3.4材料鑑定與分析儀器 21 3.4.1材料鑑定 21 3.4.2分析儀器 22 3.5吸附實驗 23 3.5.1酸鹼值吸附實驗 25 3.5.2接觸時間吸附實驗 25 3.5.3吸附方式探討 25 3.5.4動力學分析及等溫吸附曲線模式 26 第四章、結果與討論 29 4.1金屬有機框架表徵分析 29 4.1.1 FT-IR分析 29 4.1.2 SEM影像分析 32 4.2影響吸附劑與吸附質的因素 33 4.2.1酸鹼值效應 33 4.2.2接觸時間的影響 35 4.2.3吸附動力學模型 37 4.2.4等溫吸附模式 44 4.3吸附方式差異 49 4.4吸附前後FT-IR光譜分析 58 第五章、結論與建議 61 5.1結論 61 5.2建議 62 參考文獻 63 |
參考文獻 References |
1. Oveisi, M., M.A. Asli, and N.M. Mahmoodi, MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. Journal of Hazardous Materials, 2018. 347: p. 123-140. 2. Yagub, M.T., et al., Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014. 209: p. 172-184. 3. Mittal, A.K. and S.K. Gupta, Biosorption of cationic dyes by dead macro fungus Fomitopsis carnea: Batch studies. Water Science and Technology, 1996. 34(10): p. 81-87. 4. Fu, Y. and T. Viraraghavan, Fungal decolorization of dye wastewaters: a review. Bioresource Technology, 2001. 79(3): p. 251-262. 5. Banat, I.M., et al., Microbial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology, 1996. 58(3): p. 217-227. 6. Daneshvar, N., et al., Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials, 2007. 143(1): p. 214-219. 7. Venkata Mohan, S., et al., Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Management, 2002. 22(6): p. 575-582. 8. Barragán, B.E., C. Costa, and M. Carmen Márquez, Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes and Pigments, 2007. 75(1): p. 73-81. 9. Ciardelli, G., L. Corsi, and M. Marcucci, Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 2001. 31(2): p. 189-197. 10. He, Y., et al., Effect of operating conditions on separation performance of reactive dye solution with membrane process. Journal of Membrane Science, 2008. 321(2): p. 183-189. 11. Haque, E., J.W. Jun, and S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 2011. 185(1): p. 507-511. 12. Rafatullah, M., et al., Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 2010. 177(1): p. 70-80. 13. Yao, Y., et al., Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 2010. 101(9): p. 3040-3046. 14. Garg, V.K., et al., Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 2003. 89(2): p. 121-124. 15. Arora, C., et al., Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, 2019. 284: p. 343-352. 16. Tan, Y., et al., Efficient and selective removal of congo red by mesoporous amino-modified MIL-101(Cr) nanoadsorbents. Powder Technology, 2019. 356: p. 162-169. 17. Szyguła, A., et al., Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. Journal of Environmental Management, 2009. 90(10): p. 2979-2986. 18. Shi, B., et al., Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. Journal of Hazardous Materials, 2007. 143(1): p. 567-574. 19. Vlyssides, A.G., et al., Testing an electrochemical method for treatment of textile dye wastewater. Waste Management, 2000. 20(7): p. 569-574. 20. Shen, Z.M., et al., Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, 2006. 131(1): p. 90-97. 21. Körbahti, B.K., Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials, 2007. 145(1): p. 277-286. 22. Waranusantigul, P., et al., Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 2003. 125(3): p. 385-392. 23. Kannan, N. and M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments, 2001. 51(1): p. 25-40. 24. Gupta, V.K. and Suhas, Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 2009. 90(8): p. 2313-2342. 25. Bhattacharyya, K.G. and S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008. 140(2): p. 114-131. 26. James, S.L., Metal-organic frameworks. Chem Soc Rev, 2003. 32(5): p. 276-88. 27. Yan, C., et al., Adsorption of methylene blue on mesoporous carbons prepared using acid- and alkaline-treated zeolite X as the template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009. 333(1): p. 115-119. 28. Lv, S.-W., et al., Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs. Microporous and Mesoporous Materials, 2019. 282: p. 179-187. 29. Hameed, B.H., Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. Journal of Hazardous Materials, 2009. 162(1): p. 344-350. 30. Shen, T., et al., Hierarchically mesostructured MIL-101 metal–organic frameworks with different mineralizing agents for adsorptive removal of methyl orange and methylene blue from aqueous solution. Journal of Environmental Chemical Engineering, 2015. 3(2): p. 1372-1383. 31. Ghosh, D. and K.G. Bhattacharyya, Adsorption of methylene blue on kaolinite. Applied Clay Science, 2002. 20(6): p. 295-300. 32. Haque, E., et al., Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. Journal of Hazardous Materials, 2010. 181(1): p. 535-542. 33. Cheung, W.H., Y.S. Szeto, and G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 2007. 98(15): p. 2897-2904. 34. Hamza, W., et al., Sono-assisted adsorption of Cristal Violet dye onto Tunisian Smectite Clay: Characterization, kinetics and adsorption isotherms. Ecotoxicology and Environmental Safety, 2018. 163: p. 365-371. 35. Bhowmik, M., et al., Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4 nanocomposite from aqua matrix. Powder Technology, 2019. 354: p. 496-504. 36. Darvishi Cheshmeh Soltani, R., et al., Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrasonics Sonochemistry, 2016. 28: p. 69-78. 37. Jorfi, S., et al., Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder. Journal of Environmental Management, 2017. 187: p. 111-121. 38. Asfaram, A., et al., Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization. Ultrasonics Sonochemistry, 2016. 32: p. 418-431. 39. Egbosiuba, T.C., et al., Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics. Chemical Engineering Research and Design, 2020. 153: p. 315-336. 40. Yang, S., et al., Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 2021. 427: p. 213525. 41. Chughtai, A.H., et al., Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev, 2015. 44(19): p. 6804-49. 42. Zhou, H.C. and S. Kitagawa, Metal-organic frameworks (MOFs). Chem Soc Rev, 2014. 43(16): p. 5415-8. 43. Tanabe, K.K. and S.M. Cohen, Postsynthetic modification of metal-organic frameworks--a progress report. Chem Soc Rev, 2011. 40(2): p. 498-519. 44. Kuppler, R.J., et al., Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 2009. 253(23): p. 3042-3066. 45. Wang, S., et al., Exploring the Coordination Effect of GO@MOF-5 as Catalyst on Thermal Decomposition of Ammonium Perchlorate. Nanoscale Research Letters, 2019. 14(1): p. 345. 46. Li, X., et al., TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB. Applied Catalysis B: Environmental, 2016. 191: p. 192-201. 47. Aslam, S., et al., In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. Journal of Colloid and Interface Science, 2017. 505: p. 186-195. 48. Zhao, S., et al., Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). Journal of Hazardous Materials, 2018. 351: p. 301-307. 49. Férey, G., et al., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 2005. 309(5743): p. 2040-2. 50. Li, W., B. Mu, and Y. Yang, Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 2019. 277: p. 157-170. 51. Shahnawaz Khan, M., M. Khalid, and M. Shahid, What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 2020. 1(6): p. 1575-1601. 52. Bulut, Y. and H. Aydın, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006. 194(1): p. 259-267. 53. Mazaj, M., et al., Spectroscopic Studies of Structural Dynamics Induced by Heating and Hydration: A Case of Calcium-Terephthalate Metal–Organic Framework. The Journal of Physical Chemistry C, 2013. 117(15): p. 7552-7564. 54. Wu, S.-C., et al., Multi-Metals CaMgAl Metal-Organic Framework as CaO-based Sorbent to Achieve Highly CO2 Capture Capacity and Cyclic Performance. Materials, 2020. 13(10). 55. Andriamitantsoa, R., et al., SO3H-functionalized metal organic frameworks: An efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv., 2016. 6. 56. Dapaah, M.F., B. Liu, and L. Cheng, Adsorption of organic compounds from aqueous solution by pyridine-2-carboxaldehyde grafted MIL-101(Cr)-NH2 metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021. 9(4): p. 105275. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |