論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
比較誘餌式遠端水下攝影系統和水下視覺普查在時間和空間上魚類群聚的差異 A temporal and spatial comparison of coral reef fish communities from underwater visual census (UVC) and baited remote underwater video (BRUV) |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
85 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-19 |
繳交日期 Date of Submission |
2024-08-02 |
關鍵字 Keywords |
珊瑚覆蓋率、魚類群聚、水下視覺普查、誘餌式遠端水下攝影系統、營養階級、珊瑚礁生態系 coral cover, fish community, underwater visual census, baited remote underwater video, trophic level, coral reef ecosystem |
||
統計 Statistics |
本論文已被瀏覽 23 次,被下載 0 次 The thesis/dissertation has been browsed 23 times, has been downloaded 0 times. |
中文摘要 |
調查方法對長期監測至關重要,不同方法所得出結果會讓我們對生態系的狀況作出不同的解釋,我們發現在台灣地區較少研究使用誘餌式遠端水下攝影系統來調查珊瑚礁魚類。本研究旨在比較誘餌式遠端水下攝影系統(Baited Remote Underwater Video, BRUV)和水下視覺普查(Underwater Visual Census, UVC)在不同珊瑚礁地區和季節間其魚類組成是否有差異。在墾丁國家公園和小琉球地區各三個樣點進行四季的BRUV和UVC調查。結果顯示BRUV相比UVC平均記錄到多1.8倍的魚類物種數,兩種方法的魚類群聚有很大差異:UVC紀錄到較多雀鯛科魚類,在BRUV記錄到較高比例的高營養階級魚類和草食性魚類,這與各自的調查機制相關。BRUV在春季相比秋季和冬季紀錄到紀錄較少的魚類多樣性。BRUV和UVC同時記錄到墾丁和小琉球的魚類食性位階組成的不同,小琉球有較高比例的草食性、浮游食性魚類,也記錄到小琉球有較高的藻類覆蓋率。UVC因為調查方法涵蓋較多珊瑚面積,因而相比BRUV更能觀察到底棲覆蓋率與魚類群聚的相關性。將兩種方法結合使用時,除了能獲得更全面的魚類群聚資料外,也能了解珊瑚礁生態系的變化。 |
Abstract |
Long-term ecological monitors are crucial for understanding the ecosystem, and different survey methods produce different results for examining different aspects of the environment. Baited remote underwater video systems (BRUV) are not commonly used in Taiwan for surveying coral reef fish. This study aims to compare the fish communities using BRUV and underwater visual census (UVC) across different coral reef areas and seasons. BRUV and UVC surveys were conducted in three sites each in Kenting National Park and Xiaoliuqiu across four seasons. BRUV recorded on average 1.8 times more fish species richness than UVC. There were significant differences in fish assemblages between the two methods: More damselfishes were recorded in UVC, higher proportions of high trophic level and herbivorous fish were recorded in BRUV. This resulted probably from their different survey mechanisms. BRUV recorded less fish species richness in spring compared to autumn and winter. Both BRUV and UVC recorded differences in the trophic composition of fish between Kenting and Xiaoliuqiu, with Xiaoliuqiu having higher proportions of herbivorous and planktivorous fish, as well as higher algal coverage. UVC, covering more coral area in its methods, allowed better observation of the relationship between benthic cover and fish assemblages when compared with BRUV. Combining both methods could provide more comprehensive fish assemblage data and a more complete understanding of changes in coral reef ecosystems. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 表目錄 vii 圖目錄 viii 第一章、前言 1 1.1珊瑚礁魚類 1 1.2長期監測重要性 1 1.3水下視覺普查 2 1.4誘餌式遠端水下攝影系統 3 1.5地區和時間的差異 3 1.6底棲覆蓋率與魚類組成 4 1.7目標 4 第二章、材料與方法 5 2.1調查時間與地點 5 2.1.1調查地點 5 2.1.2調查時間 5 2.2調查方法 5 2.2.1誘餌式遠端水下攝影系統 5 2.2.2水下視覺普查 6 2.2.3底棲生物覆蓋率調查 6 2.3資料處理與統計 6 2.3.1影片分析 6 2.3.2魚種食性位階 7 2.3.3魚類群聚組成 7 2.3.4兩種魚類調查方法的差異 8 2.3.5魚類群聚聚類分析 8 2.3.6兩種魚類調查方法的魚類群聚空間差異 8 2.3.7兩種魚類調查方法的魚類群聚時間差異 9 2.3.8底棲覆蓋與魚類群聚的關係 9 第三章、結果 10 3.1魚類數量與種類 10 3.2魚類群聚指標分析 10 3.3魚類食性比例 11 3.4群聚分析 11 3.5不同地區的魚類群聚差異 12 3.6不同季節性的魚類群聚差異 14 3.7調查方法對底棲覆蓋率-魚類的關係 15 第四章、討論 17 4.1兩種調查方法的差異 17 4.1.1生物多樣性的差異 17 4.1.2食性位階的差異 17 4.1.3調查時間的差異 18 4.2兩種方法在地區間的差異 18 4.3兩種調查方法季節的差異 19 4.4底棲覆蓋與魚類群聚的關係 19 4.5面臨的挑戰 20 4.6未來的應用 21 第五章、結論 22 參考文獻 23 附錄 66 |
參考文獻 References |
加藤昌一(2019)《海水魚圖鑑》。游韻馨譯。臺北。晨星 李承錄、趙健舜(2022)《海洋博物誌2》。臺北。麥浩斯 林俊諭(1998)台灣南部珊瑚礁魚類群聚時空變遷之研究。國立台灣海洋大學海洋生物研究所碩士論文。 林清哲(2021)《海洋生物愛拍照 近岸珊瑚礁魚類》。屏東。國立海洋生物博物館 邵廣昭(2024)臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw, (2024-6-30) 邵廣昭、陳正平、沈世傑(1993)。《墾丁國家公園海域魚類圖鑑》。屏東。內政部營建署墾丁國家公園管理處 張水鍇(2022)111年小琉球海洋保護區近岸魚類與關鍵生物調查和復育。海洋委員會海洋保育署 陳正平(2004)墾丁國家公園海域魚類相多樣性調查及其保育研究─稀有魚類相。內政部營建署墾丁國家公園管理處 陳餘鋆(2022)2022年墾丁國家公園珊瑚礁魚類多樣性調查。內政部營建署墾丁國家公園管理處。 楊東霖(2012)小琉球海域珊瑚礁底棲群聚結構之時空變化。國立東華大學海洋生物多樣性及演化研究所碩士論文。 Addison, P. F., Flander, L. B., & Cook, C. N. (2015). Are we missing the boat? Current uses of long-term biological monitoring data in the evaluation and management of marine protected areas. Journal of environmental management, 149, 148-156. Alvarez-Filip, L., Gill, J. A., & Dulvy, N. K. (2011). Complex reef architecture supports more small‐bodied fishes and longer food chains on Caribbean reefs. Ecosphere, 2(10), 1-17. Barletta, M., Barletta‐Bergan, A., Saint‐Paul, U. S. G. H., & Hubold, G. (2005). The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of fish biology, 66(1), 45-72. Bell, J. D., & Galzin, R. (1984). Influence of live coral cover on coral-reef fish communities. Marine Ecology Progress Series, 15(3), 265-274. Bellwood, D. R., Goatley, C. H., & Bellwood, O. (2017). The evolution of fishes and corals on reefs: form, function and interdependence. Biological Reviews, 92(2), 878-901. Birkeland, C. (1997). Life and death of coral reefs. Springer Science & Business Media. Birt, M. J., Harvey, E. S., & Langlois, T. J. (2012). Within and between day variability in temperate reef fish assemblages: learned response to baited video. Journal of Experimental Marine Biology and Ecology, 416, 92-100. Boaden, A. E., & Kingsford, M. J. (2015). Predators drive community structure in coral reef fish assemblages. Ecosphere, 6(4), 1-33. Brooks, E. J., Sloman, K. A., Sims, D. W., & Danylchuk, A. J. (2011). Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research, 13(3), 231-243. Cheal, A. J., Emslie, M. J., Currey-Randall, L. M., & Heupel, M. R. (2021). Comparability and complementarity of reef fish measures from underwater visual census (UVC) and baited remote underwater video stations (BRUVS). Journal of Environmental Management, 289, 112375. Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I., & Sweatman, H. (2013). Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecological Applications, 23(1), 174-188. Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I., & Sweatman, H. (2013). Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecological Applications, 23(1), 174-188. Chong-Seng, K. M., Mannering, T. D., Pratchett, M. S., Bellwood, D. R., & Graham, N. A. (2012). The influence of coral reef benthic condition on associated fish assemblages. Coleman, D., Wood, R. J., Deeth, C., & Haeusler, T. (2023). Using baited remote underwater videos to survey freshwater turtles. Austral Ecology, 48(8), 1506-1515. Colton, M. A., & Swearer, S. E. (2010). A comparison of two survey methods: differences between underwater visual census and baited remote underwater video. Marine Ecology Progress Series, 400, 19-36. Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science, 199(4335), 1302-1310. del Rio, C. M., Dugelby, B., Foreman, D., Miller, B., Noss, R., & Phillips, M. (2001). The importance of large carnivores to healthy ecosystems. Endangered species update, 18, 202-218. Dickens, L. C., Goatley, C. H., Tanner, J. K., & Bellwood, D. R. (2011). Quantifying relative diver effects in underwater visual censuses. PloS one, 6(4), e18965. Donner, S. D. (2011). An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecological Applications, 21(5), 1718-1730. Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R., & Sweatman, H. P. (2018). Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ, 6, e4886. Engilsh S., Wilkinson C., and Baker V. (1994) Survey manual for tropical marine resources. ASEAN-Australia Marine Science Project: Living Coastal Resources. Australian Institute of Marine Science, Townsville. pp.368 Figueroa-Pico, J., Carpio, A. J., & Tortosa, F. S. (2020). Turbidity: A key factor in the estimation of fish species richness and abundance in the rocky reefs of Ecuador. Ecological Indicators, 111, 106021. Froese, R. and D. Pauly. Editors. (2024). FishBase. www.fishbase.org Gerald Allen, Roger, Steene, Paul Humann, Ned DeLoach(2005). 《Reef Fish Identification: Tropical Pacific》.Florida. New World Publications, Inc. Ghazilou, A., Shokri, M. R., & Gladstone, W. (2016). Animal v. plant‐based bait: does the bait type affect census of fish assemblages and trophic groups by baited remote underwater video (BRUV) systems?. Journal of fish biology, 88(5), 1731-1745. Goreau, T. J., & Hilbertz, W. (2005). Marine ecosystem restoration: costs and benefits for coral reefs. World resource review, 17(3), 375-409. Graham, N. A., & Nash, K. L. (2013). The importance of structural complexity in coral reef ecosystems. Coral reefs, 32, 315-326. Heithaus, M. R., Frid, A., Wirsing, A. J., & Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends in ecology & evolution, 23(4), 202-210. Henriques, S., Pais, M. P., Costa, M. J., & Cabral, H. N. (2013). Seasonal variability of rocky reef fish assemblages: detecting functional and structural changes due to fishing effects. Journal of sea research, 79, 50-59. Jones, R. E., Griffin, R. A., Januchowski-Hartley, S. R., & Unsworth, R. K. (2020). The influence of bait on remote underwater video observations in shallow-water coastal environments associated with the North-Eastern Atlantic. PeerJ, 8, e9744. Jones, R. E., Griffin, R. A., Rees, S. C., & Unsworth, R. K. (2019). Improving visual biodiversity assessments of motile fauna in turbid aquatic environments. Limnology and Oceanography: Methods, 17(10), 544-554. Kohler, K. E., & Gill, S. M. (2006). Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & geosciences, 32(9), 1259-1269. Lin, Y. J., Heinle, M. J., Al-Musabeh, A., Gopalan, J., Vasanthi, T. D., Panickan, P., ... & Shepherd, B. (2023). Coral reefs in the northeastern Saudi Arabian Red Sea are resilient to mass coral mortality events. Marine Pollution Bulletin, 197, 115693. Lindfield, S. J., Harvey, E. S., Halford, A. R., & McIlwain, J. L. (2016). Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs, 35, 125-137. Mandal, R., Connolly, R. M., Schlacher, T. A., & Stantic, B. (2018, July). Assessing fish abundance from underwater video using deep neural networks. In 2018 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. Marrable, D., Barker, K., Tippaya, S., Wyatt, M., Bainbridge, S., Stowar, M., & Larke, J. (2022). Accelerating species recognition and labelling of fish from underwater video with machine-assisted deep learning. Frontiers in Marine Science, 9, 944582. McAllister, D. E. (1991). What is the status of the world’s coral reef fishes. Sea Wind, 5(1), 14-18. McClanahan, T. R., Sala, E., Stickels, P. A., Cokos, B. A., Baker, A. C., Starger, C. J., & Jones Iv, S. H. (2003). Interaction between nutrients and herbivory in controlling algal communities and coral condition on Glover¹s Reef, Belize. Marine Ecology Progress Series, 261, 135-147. Merlo, P. J., Venerus, L. A., & Irigoyen, A. J. (2023). Fine-scale variation in the proximity of baited remote underwater video stations (BRUVS) to rocky reefs reveals changes in the structure of temperate fish assemblages. Marine Environmental Research, 185, 105902. Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological economics, 29(2), 215-233. Mumby, P. J., Broad, K., Brumbaugh, D. R., DAHLGREN, C. P., Harborne, A. R., Hastings, A., ... & Sanchirico, J. N. (2008). Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conservation Biology, 22(4), 941-951. Nonaka, R. H., Matsuura, Y., & Suzuki, K. (2000). Seasonal variation in larval fish assemblages in relation to oceanographic conditions in the Abrolhos Bank region off eastern Brazil. Fishery Bulletin, 98(4), 767-767. Parrish, J. D. (1989). Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine ecology progress series. Oldendorf, 58(1), 143-160. Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in ecology and evolution, 10(10), 430. Roa-Ureta, R. H. (2015). Stock assessment of the Spanish mackerel (Scomberomorus commerson) in Saudi waters of the Arabian Gulf with generalized depletion models under data-limited conditions. Fisheries Research, 171, 68-77. Russ, G. R., Rizzari, J. R., Abesamis, R. A., & Alcala, A. C. (2021). Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecological Applications, 31(1), e02224. Sammarco, P. W., & Williams, A. H. (1982). Damselfish territoriality: Influence on Diadema distribution and implications for coral community structure. Marine ecology progress series. Oldendorf, 8(1), 53-59. Sanderson, S. L., & Solonsky, A. C. (1986). Comparison of a rapid visual and a strip transect technique for censusing reef fish assemblages. Bulletin of Marine Science, 39(1), 119-129. Schmid, K., & Giarrizzo, T. (2019). More than Fish–The Potential of Baited Remote Underwater Video to Assess Freshwater Herpetofauna and Dolphins. Proceedings of the Academy of Natural Sciences of Philadelphia, 166(1), 1-7. Soga, M., & Gaston, K. J. (2018). Shifting baseline syndrome: causes, consequences, and implications. Frontiers in Ecology and the Environment, 16(4), 222-230. Thiel, R., & Potter, I. C. (2001). The ichthyofaunal composition of the Elbe Estuary: an analysis in space and time. Marine biology, 138, 603-616. Thompson, A. A., & Mapstone, B. D. (1997). Observer effects and training in underwater visual surveys of reef fishes. Marine Ecology Progress Series, 154, 53-63. Thompson, A. A., & Mapstone, B. D. (2002). Intra-versus inter-annual variation in counts of reef fishes and interpretations of long-term monitoring studies. Marine Ecology Progress Series, 232, 247-257. Ulfah, I., Yusuf, S., Rappe, R. A., Bahar, A., Haris, A., Tresnati, J., & Tuwo, A. (2020, March). Coral conditions and reef fish presence in the coral transplantation area on Kapoposang Island, Pangkep Regency, South Sulawesi. In IOP Conference Series: Earth and Environmental Science (Vol. 473, No. 1, p. 012058). IOP Publishing. Whitmarsh, S. K., Fairweather, P. G., & Huveneers, C. (2017). What is Big BRUVver up to? Methods and uses of baited underwater video. Reviews in fish biology and fisheries, 27, 53-73. Willis, T. J., Badalamenti, F., & Milazzo, M. (2006). Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology, 331(1), 108-120. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |