論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
IS-95 CDMA射頻傳收機模組及其功率放大器元件MMIC設計 Development of IS-95 CDMA RF Transceiver Including a Power Amplifier MMIC Design |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
71 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2001-06-26 |
繳交日期 Date of Submission |
2001-07-04 |
關鍵字 Keywords |
二極體線性器、功率放大器、射頻傳收機 Diode Linearizer, Power Amplifier, RF Transceiver |
||
統計 Statistics |
本論文已被瀏覽 5968 次,被下載 7180 次 The thesis/dissertation has been browsed 5968 times, has been downloaded 7180 times. |
中文摘要 |
中文提要: 本論文前半部主要是以IS-95 CDMA無線通訊系統為例,介紹行動端射頻傳收機模組的設計流程,以詳細的鏈路預算分析方法,預估射頻傳收機模組性能,並與規範做比較,最後以實做來加以驗證。本論文後半段主要是以適合PCS頻段CDMA系統之功率放大器元件設計為主,並詳細介紹整個設計流程,且以美國GCS公司所提供的GaAs HBT製程,進行單晶微波積體電路之製作。整體電路以3.4伏特為偏壓電源,並配合偏壓式二極體線性器技術,設計規格則以線性增益與輸出功率分別大於30dB與27dBm,諧波抑制在無諧波濾除電路幫助下26dBc以上,功率增加效率達36.7﹪,鄰近通道功率比例小於-45 dBc,輸入埠VSWR小於2等為目標。並與傳統偏壓方式之功率放大器設計做比較,以凸顯其提升線性度之能力 |
Abstract |
Abstract: This thesis was consisted of two parts. Part 1 introduced the procedure for designing the RF transceiver module in an IS-95 CDMA system using link budget analysis. Part 2 was focused on a CDMA power amplifier integrated circuit design for Personal Communication Service (PCS) applications. The design procedure was introduced in detail and implemented in MMIC for using GaAs HBT foundry provided by the GCS Ltd.. The designed linear gain, output 1dB compression point and power added efficiency (PAE) are above 30 dB, 27 dBm and 36.7% respectively under a single supply voltage of 3.4 V with the help of a diode linearizer. Harmonic components were suppressed more than 26 dB without use of any filters in the output. The adjacent channel power ratio (ACPR) and the VSWR of input port are below -45 dBc and 2 respectively. |
目次 Table of Contents |
目 錄 第一章 緒論 1 1.1 IS-95 CDMA通訊系統 1 1.2 無線通訊半導體元件特性介紹 3 1.3 各種功率放大器線性化技術 5 1.4 章節介紹 7 第二章 IS-95 CDMA射頻傳收機模組 8 2.1 規格介紹 8 2.2 規劃流程 8 2.3 鏈路預算 11 2.3.1 原理基礎 11 2.3.2 分析計算流程 14 2.4 製作實例 28 2.4.1 發射機整合測試 28 2.4.2 接收機整合測試 30 2.5 綜合討論 34 第三章 PCS頻段CDMA功率放大器MMIC設計 36 3.1 功率放大器簡介 36 3.2 功率放大器非線性參數 36 3.2.1 AM/AM與AM/PM 36 3.2.2 鄰近通道功率比例 37 3.2.3 輸出三次交叉點 39 3.3 GSM與CDMA功率放大器之差異 39 3.4 二級體線性器原理 40 3.5 CDMA功率放大器MMIC設計流程 43 3.6 PCS頻段CDMA功率放大器設計 45 3.6.1 設計方法與模擬結果 46 3.6.2 佈局考量 64 3.6.3 製作與量測 65 3.6.4 上屆學長設計之功率放大器MMIC量測 結果 65 第四章 結論 65 參考文獻 67 圖表目錄 第一章 表1.1 近年北美數位通訊系統規格 2 圖1.1 以傅利葉級數分析各電流成分波型與導通角之關 係 6 圖1.2 基本回授技術示意圖 6 圖1.3 基本順授技術示意圖 7 第二章 表2.1 IS-95發射機模組規格 9 表2.2 IS-95接收機模組規格 9 圖2.1 IS-95 射頻傳收機模組設計製作流程 10 表2.3 性能未達規範之元件選取要點 11 圖2.2 電路之訊號功率增益 11 圖2.3 1dB增益壓縮點與輸出三次交叉點示意圖 12 圖2.4 主動電路之雜訊指數 13 圖2.5 被動電路之雜訊指數 13 圖2.6 IS-95CDMA蜂巢式頻段傳收機架構圖 15 表2.4 發射機各級電路參數 15 表2.5 接收機各級電路參數 16 表2.6 發射機串級電路參數 16 表2.7 接收機串級電路參數 16 表2.8 用於靈敏度分析之鏈路計算參數 18 圖2.7 用於靈敏度分析之功率佈局圖 18 圖2.8 用於交互調變贅餘響應衰減能力分析之訊號分佈 圖 20 表2.9 用於交互調變贅餘響應衰減能力分析之鏈路計算 參數 21 圖2.10 用於單音去靈敏化能力分析之訊號分佈圖阻 22 表2.10 用於單音去靈敏化能力分析之鏈路計算參數 22 圖2.11 用於單音去靈敏化能力分析之功率分佈圖 23 圖2.12 IS-95 CDMA PCS頻段接收機架構圖 24 表2.11 接收機各級電路參數 24 表2.12 接收機串級電路參數 24 表2.13 用於靈敏度分析之鏈路計算參數 25 圖2.13 用於靈敏度分析之功率分佈圖 25 表2.14 用於交互調變贅餘響應衰減能力分析之鏈路計 算參數 26 圖2.14 用於交互調變贅餘響應衰減能力分析之功率分佈 圖 26 表2.15 用於單音去靈敏化能力分析之鏈路計算參數 27 圖2.16 IS-95 CDMA蜂巢式頻段發射機輸出頻譜 29 圖2.17 頻譜重增長測試示意圖 29 表2.16 IS-95 CDMA蜂巢式頻段發射機整體測試規格表 30 圖2.18 IS-95 CDMA蜂巢式頻段發射機整合成品照片 30 圖2.19 靈敏度測試架構圖 32 圖2.20 靈敏度測試結果之星狀圖、眼狀圖及EVM值 (接收訊號功率為-103 dBm) 32 圖2.21 輸出三次交叉點OIP3量測圖 (OIP3經計算為-0.8 dBm) 32 圖2.22 抗干擾能力測試架構圖 33 表2.17 IS-95 CDMA蜂巢式頻段接收機整體測試規格表 33 圖2.23 IS-95 CDMA蜂巢式頻段接收機整合成品照片圖 33 第三章 圖3.1 增益失真度與相位漂移度示意圖 37 圖3.2 頻譜增長示意圖 38 表3.1 GSM與CDMA功率放大器元件性能參數比較表 39 圖3.3 串聯式二極體線性器 41 圖3.4 並聯式二極體線性器 41 圖3.5 偏壓式二極體線性器 42 圖3.6 二極體跨壓隨輸入訊號功率增加而有更明顯的整 流效果 42 圖3.7 二極體跨壓之直流成分隨輸入訊號功率的變化情 況 42 圖3.8 有二極體線性器情況下放大器基射極跨壓直流成 分隨輸入訊號功率的變化情況 43 圖3.9 有二極體線性器情況下放大器集極電流直流成分 隨輸入訊號功率的變化情況 43 圖3.10 CDMA功率放大器MMIC設計流程 44 圖3.11 二極體線性器偏壓之三級功率放大器架構 45 圖3.12 傳統電阻分壓式偏壓之三級功率放大器架構 46 圖3.13 傳統電流源偏壓之三級功率放大器架構 46 圖3.14 最大增益分析之電路 47 圖3.15 小訊號放大級電路架構 48 圖3.16 小訊號放大級基射極跨壓直流成分隨輸入訊號 功率的變化情況 48 圖3.17 小訊號放大級集極電流直流成分隨輸入訊號功率 的變化情況 48 圖3.18 小訊號放大級輸出功率與效率隨輸入訊號功率的 變化情況 49 圖3.19 小訊號放大級增益壓縮與相位失真隨輸入訊號功 率的變化情況 49 圖3.20 小訊號放大級二次與三次諧波功率隨輸入訊號功 率的變化情況 49 圖3.21 小訊號放大級增益與返回損耗與頻率的變化關 係 50 圖3.22 小訊號放大級穩定因子Mu值分析 50 圖3.23 小訊號放大級在不同輸入訊號功率情況下集極電 流波形 50 表3.2 小訊號放大級之模擬參數規格表 51 圖3.24 驅動放大級輸出端負載阻抗以及輸入端埠特性阻 抗設定說明 52 圖3.25 驅動放大級利用等增益圓與等功率曲線選取負載 阻抗 52 圖3.26 驅動放大級電路架構 52 圖3.27 驅動放大級基射極跨壓直流成分隨輸入訊號功率 的變化情況 53 圖3.28 驅動放大級集極電流直流成分隨輸入訊號功率的 變化情況 53 圖3.29 驅動放大級輸出功率與效率隨輸入訊號功率的變 化情況 53 圖3.30 驅動放大級增益壓縮與相位失真隨輸入訊號功率 的變化情況 54 圖3.31 驅動放大級二次與三次諧波功率隨輸入訊號功率 的變化情況 54 圖3.32 驅動放大級增益與返回損耗與頻率的變化關係 54 圖3.33 驅動放大級穩定因子Mu值分析 55 圖3.34 驅動放大級在不同輸入訊號功率情況下的集極 電流波形 55 表3.3 驅動放大級之模擬參數規格表 55 圖3.35 功率放大級之等功率曲線以及等增益圓 56 圖3.36 功率放大級電路架構 57 圖3.37 功率放大級基射極跨壓直流成分隨輸入訊號功率 的變化情況 58 圖3.38 功率放大級集極電流直流成分隨輸入訊號功率的 變化情況 58 圖3.39 功率放大級輸出功率與效率隨輸入訊號功率的變 化情況 58 圖3.40 功率放大級增益壓縮與相位失真隨輸入訊號功率 的變化情況 59 圖3.41 功率放大級二次與三次諧波功率隨輸入訊號功率 的變化情況 59 圖3.42 功率放大級增益與返回損耗與頻率的變化關係 59 圖3.43 功率放大級穩定因子Mu值分析 60 圖3.44 功率放大級在不同輸入訊號功率情況下的集極電 流波形 60 表3.4 功率放大級之模擬參數規格表 60 圖3.45 功率放大器在採用三種偏壓方式情況下增益壓縮 之比較 61 圖3.46 功率放大器在採用三種偏壓方式情況下相位失真 之比較 62 圖3.47 功率放大器在採用三種偏壓方式情況下效率之 比較 62 圖3.48 功率放大器在採用三種偏壓方式情況下輸出功率 之比較 62 圖3.49 (a)模擬功率放大器以電阻分壓式偏壓之頻譜增長 情況(b) 模擬功率放大器以電流源式偏壓之頻 譜增長情況(c) 模擬功率放大器以二極體線性 器偏壓之頻譜增長情況………………………….63 表3.5 本功率放大器MMIC設計與美國RFMD公司之類 似功能MMIC設計在規格上之比較 64 圖3.50 功率放大器MMIC之佈局圖 65 表3.6 上界學長下線之功率放大器MMIC測試規格表 66 圖3.51 上界學長下線之功率放大器MMIC測試電路照 片 66 |
參考文獻 References |
參考文獻 [1] J.S. Lee, "Overview of the technical basis of QUALCOMM'S CDMA cellular telephone system design- a view of north American TIA/EIA IS-95," Proceeding in IEEE ICCS, Singapore , pp. 353-358, 1994. [2] Y. Han and H.G. Bahk, "CDMA technology: present status and future prospects," Proceeding in Asia Pacific Microwave Conference, pp. 165-168, 1997. [3] D.N. Knisely, S. Kumar, S. Laha, and S. Nanda, "Evolution of wireless data services: IS-95 to cdma2000," IEEE Communications Magazine, pp. 140-149, 1998. [4] S.W. Chen, "Linearity requirements for digital wireless communications," IEEE GaAs IC Symposium Digest, pp. 29-32, 1997. [5] J.D. Neal, "Advantages of HBT, Wireless Design & Development," , 1995. [6] T. Ho, K. Pande, F. Phelleps, and J. Singer, "Power amplifier performance and modelling of one-emitter-finger GaAlAs/GaAs heterojunction bipolar transistor," Electronics Letters, vol. 28, pp. 2182-2184, Nov. 1992. [7] L. Andrieux, A. Cazarre, J.P. Bailbe, and A. Marty, "U-band monolithic millimetre-wave GaAs MESFET power amplifier," IEE Proc.-Circuit Devices Syst., vol.143, no. 6, pp. 352-356, Dec. 1996. [8] J.J. Brown, J.A. Pusl, M. Hu, ect. , "High-efficiency GaAs-based pHEMT C-band power amplifier," IEEE Microwave and Guided Wave Letters, vol.6, pp. 91, Feb. 1996. [9] F. Ren, C.R. Abernathy, S.J. Pearton, and P.W. Wisk ect, "Self-aligned In GaP/GaAs heterojunction bipolar transistors for microwave power application," IEEE Electron Devices Letters, vol.14, pp. 332-334, 1993. [10] W. Liu, A. Khatibzadeh, J. Sweder, "First demonstration of high-power GaInP/GaAs HBT MMIC power amplifier with 9.9 W output power at X-band," IEEE Microwave and Guided Wave Letters, vol.4, pp. 293-295, Sep., 1994. [11] K. Yamamoto, S. Suzuki,K. Mori, and T. Asada ect, "A 3.2-V operation single-chip dual-band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique," IEEE J. Solid-State Circuits, vol. 35, pp. 1109-1120, Aug., 2000. [12] W. Liu, T. Kim, and A. Khatibzadeh, "2.0W C.W. X-bandGaInP/GaAs Heterojunction Bipolar Transistor," IEEE Microwave and Guided Wave Letters, vol.4, no. 1, pp. 14-16, Jan., 1994. [13] P.D. Tseng, L. Zhang, G.B. Gao, and M.F. Chang, "A 3-V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) cellular handset applications," IEEE J. Solid-State Circuits, vol. 35, pp. 1338-1344, Sep., 2000. [14] A. Bessemoulin, H. Massler, A. Hulsmann, and M. Schlechtweg, "Ka-band high-power and driver MMIC amplifiers using GaAs PHEMTs and coplanar waveguides," IEEE Microwave and Guided Wave Letters, vol. 10, pp. 534-536, Dec., 2000. [15] H.J. Siweris, A. Werthof, H. Tischer, and U. Schaper, "Low-cost GaAs pHEMT MMIC's for millimeter-wave sensor applications," IEEE Trans. Microwave Theory and Techniques, vol. 46, pp. 2560-2567, Dec., 1998. [16] F.L. Lin, S.F. Chen, H.R. Chuang, "Computer simulation of nonlinear effects of RF power amplifiers based on EVM and ACPR for digital wireless communications," Electronics Letters, vol. 36, pp. 77-79, Jan., 2000. [17] N. Miyazawa, H. Itoh, Y. Nakasha, T. Iwai, T. Miyashita, S. Ohara, K. Joshin "0.2 cc HBT power amplifier module with 40% power-added efficiency for 1.95 GHz wide-band CDMA cellular phones," IEEE Microwave Symposium Digest, vol. 3, pp. 1099-1102, 1999. [18] G. Hau, T.B. Nishimura, N. Iwata, "High efficiency, wide dynamic range variable gain and power amplifier MMICs for wideband CDMA handsets," Microwave and Wireless Components Letters, vol. 11, pp. 13-15, Jan., 2001. [19] P.B. Kenington, High-Linearity RF Amplifier Design, Artech House, 2000. [20] B. Shi, L. Sundstrom, "Chip for linearisation of RF power amplifiers using power feedback," Electronics Letters, vol. 34, pp. 2117-2119, Oct., 1998. [21] T. Sowlati, Y.M. Greshishchev, C.A.T. Salama, "Phase-correcting feedback system for class E power amplifier," IEEE J.Solid-State Circuits, vol. 32, pp. 544-549, Apr., 1997. [22] M. Faulkner, "Amplifier linearization using RF feedback and feedforward techniques," IEEE Trans. Vehicular Technology, vol. 47, pp. 209-215, Feb., 1998. [23] S.G. Kang, I.K. Lee, K.S. Yoo, "Analysis and design of feedforward power amplifier," Microwave Symposium Digest, vol. 3, pp. 1519-1522, 1997. [24] J. Yi, Y. Yang, M. Park, W. Kang, B. Kim, "Analog predistortion linearizer for high-power RF amplifiers," IEEE Trans.Microwave Theory and Techniques, vol. 48, pp. 2709-2713, Dec., 2000. [25] G. Hau, T.B. Nishimura, N. Iwata "A linearized power amplifier MMIC for 3.5 V battery operated wide-band CDMA handsets," Microwave Symposium Digest, vol. 3, pp. 1503-1506, 2000. [26] S. C. Cripps, RF Power Amplifier for Wireless Communication", Artech House, 1999. [27] J. S. Lee, L. E. Miller, CDMA Systems Engineering Handbook, Artech House, 1998. [28] TIA/EIA-98-C ,"Recommended Minimum Performance Standards for Dual-Mode Spread Spectrum Mobile Stations, Telcommunications Industry Association", Aug., 1999. [29] S.W. Chen, "Linearity requirements for digital wireless communications," Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 29-32, 1997. [30] C.R. Paul, Electromagnetic Compatibility, John Wiley & Sons, 1992. [31] D.H. Morais, K. Feher, "The Effect of Filtering and Limiting on the Performance of QPSK,Offset QPSK,and MSK Signals," IEEE Trans. Communication, vol. 28, pp. 1999-2009, 1980. [32] J.F. Sevic, J. Staudinger, "Simulation of Aadjacent Channel Power for Digital Wireless Communication Systems," Microwave J. , pp. 66-380, Oct., 1996. [33] J. Kenney, A. Leke, "Power amplifier spectrum regrowth for digital cellular and PCS application," Microwave J., pp. 74-92, Oct., 1995. [34] C. Haskins, T. Winslow, S. Raman, "FET diode linearizer optimization for amplifier predistortion in digital radios," IEEE Microwave and Guided Wave Letters, vol. 10, pp. 21-23, Jan., 2000. [35] K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh and ect, "A novel series diode linearizer for mobile radio power amplifiers," Microwave Symposium Digest, vol.2, pp. 831-834, 1996. [36] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi, "A microwave miniaturized linearizer using a parallel diode with a bias feed resistance," IEEE Trans. on Microwave Theory and Techniques, vol. 45, pp. 2431-2435, Dec., 1997. [37] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi, "A microwave miniaturized linearizer using a parallel diode," Microwave Symposium Digest, vol. 3, pp. 1199-1202, 1997. [38] K. Yamauchi, M. Nakayama, Y. Ikeda, H. Nakaguro, N. Kadowaki, T. Araki, "An 18 GHz-band MMIC linearizer using a parallel diode with a bias feed resistance and a parallel capacitor," Microwave Symposium Digest., vol. 3, pp. 1507-1510, 2000. [39] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara, "An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications," IEEE J. on Solid-State Circuits, vol. 33, pp. 1290-1296, Sep., 1998. [40] T. Yoshimasu, M. Akagi, N. Tanba, S. Hara, "A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for pi/4 DQPSK modulation," Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 45-48, 1997. [41] "RF2161:3V W-CDMA Power 1900MHz 3V Linear Power Amplifier," Designer's Handbook, RF Micro Device Inc., 1999. [42] "HBT & HEMT 新製程研討會," 國家晶片系統設計中心., 1999. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |