Responsive image
博碩士論文 etd-0704121-155917 詳細資訊
Title page for etd-0704121-155917
論文名稱
Title
開發基於模組化自組裝類病毒粒子之精準診斷治療平台
Development of precision theranostic platform based on modular self-assembly virus-like particles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
210
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-07-29
繳交日期
Date of Submission
2021-08-04
關鍵字
Keywords
腦癌、RNA干擾、類病毒粒子、血腦屏障、抗藥性
Brain Tumor, RNA interference (RNAi), Virus-like particles (VLPs), blood-brain barrier (BBB), drug resistance
統計
Statistics
本論文已被瀏覽 221 次,被下載 0
The thesis/dissertation has been browsed 221 times, has been downloaded 0 times.
中文摘要
惡性腫瘤常居國人十大死因之首,其中又以腦癌最為惡劣,五年存活率不及一成。而血腦屏障與細胞抗藥性使得化療與基因治療等療法效果不彰。本研究將針對腦癌細胞之抗藥性評估而設計一快速檢測系統,利用Qβ 類病毒粒子 - 金奈米簇生物礦化之複合材料實現之。且搭配智慧型手機結合雲端運算評估癌細胞抗藥性,將有助於選擇後續治療手段。在治療方面,本研究研發三項主要解決方案。若針對無明顯抗藥性腫瘤,採用對流輸送增強法 (convection-enhanced delivery, CED) 直接將裝載化療藥物Epirubicin (EPI) 之 Qβ 類病毒粒子送入腫瘤進行原位治療。若針對抗藥性較強之腫瘤,本研究設計了兩套 RNAi 輸送系統以降低其抗藥性,目前也已經成功利用基因工程技術一步合成自動封裝第 1 代雙功能 RNAi 骨架於內部的 Qβ 類病毒載體,並可於載體表面修飾增強細胞吞噬多肽 (cell penetration peptide, CPP) 以及協助穿越血腦屏障的 Apolipoprotein E (ApoE) 多肽。類病毒載體不具細胞毒性,可利用 E. coli. 快速、方便、大量生產,大幅降低基因藥物製造成本與提升安全性。針對造成 Temozolomide (TMZ) 抗藥性的 c-MET 進行 RNA 干擾治療,提升 TMZ 治療效果。此外,本研究進一步設計出第二代,包含兩種 RNAi 功能與螢光追蹤功能且能自動封裝的多功能的 RNAi 骨架,突破目前無法及時定量追蹤 RNAi 的困境。此骨架結合三向結構域 (three way junction domain),可實現多重 RNAi 輸送,並同時追蹤 RNA 之分解現象,此多重 RNAi 輸送也提供多重基因治療的可能。最後,本研究將以實際動物實驗進行最佳化劑量、治療效能及存活率評估。結合上述研究,此整合式自組裝多功能類病毒系統可望減低嘗試藥物治療之時間與資源、減少抗藥性及提升輸送效率,期望能提升腦癌之治療效率與提升病患之存活。
Abstract
Malignant tumors often rank the top ten causes of death in Taiwan. Brain tumor is known as the most lethal cancer which the five-year survival rate is less than 10%. The drug resistance and blood-brain barrier (BBB) makes chemotherapy and gene therapy less effective. This study will design a rapid detection system for drug resistance evaluation of brain cancer cells, comprising Qβ-like viral gold nano-cluster composite materials, smart phones and cloud computing to help make a strategy of follow-up treatment. In terms of treatment, this study developed three main solutions. For the low drug-resistant tumors, we developed Epirubicin-loaded virus-like particles (VLPs) which can be delivered to brain tumor by convection-enhanced delivery (CED) for in situ treatment. The results clearly indicated that a combination of Epirubicin-loaded VLPs and CED can serve as a flexible and powerful synergistic treatment in brain tumors without evidence of systemic toxicity.
For drug-resistant tumors, we have successfully developed the first-generation bifunctional RNAi backbone (i.e., c-MET RNAi), which can be automatically encapsulated in VLPs to downregulate c-MET expression and inhibit the DNA repair mechanism (i.e., demethylation) for promoting the curative efficacy of oral Temozolomide (TMZ). Furthermore, the surface of VLPs is further modified with enhance cell phagocytic peptides (CPP) and Apolipoprotein E (ApoE) peptides to enhance the efficacy of cell uptake and BBB penetration. The results of this study could be critical for the design of RNAi-based genetic therapeutics for promoting chemotherapy against brain tumors.
Furthermore, we developed second-generation multi-functional RNAi scaffold based on three-way junction (3WJ) domain structure with two RNAi functions and real-time fluorescence tracking function to overcome the current dilemma that RNAi cannot be tracked quantitatively in time in cells. This study can achieve multiple RNAi delivery and simultaneously track the decomposition of RNAi in cells to provide the possibility of multiple gene therapy. The results demonstrated that more than 95% of the tumors were suppressed after the combined treatment (gene therapy + radiotherapy), and 100% of the animals survived, compared with the current clinical radiotherapy using carboplatin as radio-sensitizer (only 80% of the final animal survived). Summarizing the above research, this self-assemble multi-functional viral-based system is expected to reduce the drug resistance and enhance drug delivery efficiency that may improve the treatment efficiency and the survival of patients with brain tumor.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
中文摘要 iv
Abstract v
目錄 vii
圖次 xiii
表次 xvi
第1章、 緒論 1
1.1. 研究背景與動機 1
1.2. 腦癌現行治療困境與多功能平台需求 3
1.2.1. 腦癌之流行病學與疾病概述 3
1.2.2. 腦癌之治療手段比較與困境 4
1.2.3. 腦癌治療之多功能平台需求 6
1.3. 類病毒奈米粒子 (virus-like particles, VLPs) 8
1.3.1. VLPs 簡介 8
1.3.2. VLPs 現今應用範圍 10
(1) 作為疫苗或疫苗載體 10
(2) 作為藥物輸送載體 11
(3) 作為基因輸送載體 13
(4) 結合金屬或其他成分的整合應用 13
1.3.3. VLPs 應用之瓶頸與作為平台之可能性 14
1.4. 腦癌細胞之抗藥性評估 15
1.4.1. 癌細胞抗藥性的產生與細胞內氧化壓力 15
1.4.2. 現行檢測 GSH 方法之優缺點比較 16
1.4.3. 紙基材的生物感測器優勢 18
1.4.4. 蛋白質-奈米簇用於檢測 19
1.5. 血腦屏障與對流增強輸送法 22
1.5.1. CED 簡介與血腦屏障 22
1.5.2. 泛艾黴素之化學治療與輸送 23
1.5.3. CED 搭配 VLP 作為藥物輸送追蹤平台之可行性 24
1.6. 基因治療 26
1.6.1. RNA干擾之原理簡介 26
1.6.2. RNAi 相關輸送方式與面臨困境 28
1.6.3. RNA骨架之摺疊模式與 RNAi 之影響 30
1.6.4. 表皮生長因子與 let-7g miRNA 作為基因治療標的 32
1.6.5. RNA 螢光適體與即時RNA追蹤 34
1.6.6. 多功能 RNA 在 VLPs 中自組裝的可行性分析 36
1.7. 研究目的 37
第2章、 研究設計 40
2.1. 研究架構設計 40
2.2. 實驗材料 43
(1) 質體、核酸與酶 43
(2) 化學藥品與實驗套裝 44
(3) 耗材用品 48
2.3. 實驗儀器 49
第3章、 利用金奈米簇生物礦化 VLPs 作為 GSH 生物感測器 (應用一) 51
3.1. 研究簡介 51
3.2. 研究方法 52
3.2.1. VLPs 金奈米簇製作 52
3.2.2. 穿透式電子顯微鏡 52
3.2.3. 蔗糖濃度梯度超高速離心影像 52
3.2.4. AuVCs螢光影像 52
3.2.5. AuVCs的螢光光譜測量 53
3.2.6. AuVCs 對 H2O2/TMB 的動力學參數 53
3.2.7. 側向流道試紙的製備 53
3.2.8. 使用 LFPB 進行 GSH 檢測 53
3.2.9. LFPB 的穩定性研究 54
3.2.10. 抗干擾與回收率測試 54
3.2.11. 細胞實驗 55
3.2.12. 統計分析 55
3.3. 研究結果與討論 55
3.3.1. VLPs 和 AuVCs 的製造與鑑定 57
3.3.2. AuVCs 的動力學和穩定性研究 59
3.3.3. 使用 AuVCs 以 H2O2/TMB 進行 GSH 比色檢測 62
3.3.4. AuVCs 催化金粒子生成之訊號產生機制 66
3.3.5. 使用側流式等離子生物感測器 (lateral flow plasmonic biosensor,LFPB) 測定 GSH 68
3.3.6. 使用 LFPB 測定細胞內和組織之 GSH 含量並預測抗藥性 75
3.4. 總結 78
第4章、 VLPs 包覆 EPI 並以 CED 輸送進行腦癌治療 (應用二) 79
4.1. 研究簡介 79
4.2. 研究方法 80
4.2.1. Qβ衣殼蛋白 (QβCP) 和綠色螢光蛋白共表達質體 80
4.2.2. CPP修飾 VLPs gVLPs 81
4.2.3. 將 EPI 包裝於 CPP-gVLPs 中之包覆率測試 82
4.2.4. 穿透式電子顯微鏡 82
4.2.5. EPI釋放曲線測定 83
4.2.6. 細胞實驗 83
4.2.7. CPP-gVLPs通過尾靜脈注射和 CED 注射的生物分佈 84
4.2.8. 動物實驗:腦部腫瘤植入 85
4.2.9. CED 注射實驗 86
4.2.10. 組織病理學研究 86
4.2.11. CED 注入的EPI @ CPP-gVLPs的抗腫瘤效率 86
4.2.12. 血液生化分析和免疫測定 87
4.3. 研究結果與討論 87
4.3.1. EPI@CPP-gVLPs 的生產和鑑定 87
4.3.2. 體外細胞攝取和細胞毒性研究 94
4.3.3. CPP-gVLPs的體內生物分佈分析 96
4.3.4. CED 的組織毒性分析和腦內藥物分佈 99
4.3.5. 以 CED 注射 EPI@CPP-gVLPs 的動物體內抗腫瘤效率 103
4.3.6. 血液生化分析 106
4.4. 總結 107
第5章、 包裝多功能 RNAi 骨架之 VLPs 偕同 CED 進行腦癌治療 (應用三) 109
5.1. 研究簡介 109
5.2. 研究方法 115
5.2.1. 質體建構 115
5.2.2. VLPs菌內表現與純化 115
5.2.3. 菌體全RNA與VLPs內部RNA之純化 115
5.2.4. VLPs性質鑑定 116
5.2.5. VLPs 穩定性實驗 117
5.2.6. 細胞攝取實驗 117
5.2.7. 北方墨點法 (Northern blotting) 117
5.2.8. 西方墨點法 118
5.2.9. 螢火蟲螢光素酶表現檢測 119
5.2.10. 免疫螢光測定 119
5.2.11. 細胞生長測定 119
5.2.12. 細胞侵襲與遷徙能力測定 120
5.2.13. VLPs細胞毒性測試 120
5.2.14. 動物實驗 121
(1) 動物實驗程序 121
(2) 體內腫瘤抑制研究 121
(3) 組織病理學研究 121
5.3. 研究結果與討論 122
5.3.1. 多功能 RNAi 骨架的結構設計與表達系統構建 122
5.3.2. 多功能 RNAi 骨架受到 Qβ 衣殼保護提升穩定性 132
5.3.3. rQβ@b-3WJsiEGFR siLUC 可被細胞吞食並進行 RNAi 追蹤 135
5.3.4. RNAi 骨架包裝於 VLPs 可在 GBM 細胞進行多目標沉默 141
5.3.5. CED 注射體內腫瘤抑制 149
5.4. 總結 154
第6章、 綜合討論 156
6.1. 科學研究應用討論 157
6.2. 臨床應用討論 160
6.3. 延伸研究與未來發展方向 163
第7章、 結論 167
參考文獻 171
附錄 189
附錄一、歷年發表期刊論文 189
附錄二、歷年參與研討會發表 192
附錄三、歷年獲獎 193


圖次
圖 1 1、腦癌分類相對應之發展歷程圖與相關的基因異常。 4
圖 1 2、應用不同種類之病毒製作之 VLPs 衣殼模式3D模擬圖13。 9
圖 1 3、Qβ VLPs 之形成與結構特性。 10
圖 1 4、蛋白質輸送 VLPs 的生成和作用方式。 12
圖1 5、Qβ VLPs 之基本性質、常見應用與其優勢示意圖。 15
圖 1 6、金奈米簇結合的HEV奈米衣殼的3D建模。 20
圖 1 7、Qβ 衣殼蛋白之結合局部結構。 21
圖 1 8、CED的配置示意圖。 23
圖 1 9、RNAi 作用機制圖。 27
圖 1 10、Phi-29 噬菌體的 DNA 包裝馬達 3D 模擬圖。 31
圖 1 11、Broccoli 螢光 RNA 適體之篩選與結構應用示意圖。 35
圖 2 1、研究架構示意圖。 41
圖 3 1、GSH 生物感測器系統運作之概念圖。 56
圖 3 2、AuVCs 的特性鑑定。 58
圖 3 3、在相同參數下合成的AuVC和BSA-AuNC的比較。 59
圖 3 4、AuVCs 催化特性與酵素動力學鑑定。 61
圖 3 5、以DLS測量用 5 mM GSH 處理前後的 VLPs 之粒徑分佈。 63
圖 3 6、VLPs 之分解現象分析。 64
圖 3 7、利用 AuVCs 作為 GSH 檢測之探針與校正曲線之測定。 65
圖 3 8、HAuCl4 與不同基團反應的 UV-Vis 吸收光譜和相應的照片。 67
圖 3 9、AuVCs 作為金奈米粒子之生長模板之可行性分析。 68
圖 3 10、LFPB GSH 自動分析的圖像處理流程。 69
圖 3 11、LFPB 檢測區 (Y 區) 之局部SEM影像以及EDS元素分析。 71
圖 3 12、LFPB 之運作與判讀。 72
圖 3 13、AuVCs 與LFBP系統的穩定性測試。 74
圖 3 14、LFPB 使用 TMB 作為訊號源測試。 75
圖 3 15、以 LFPB 系統結合自動化判讀軟體進行細胞與真實組織檢體的 GSH 濃度測定,以及抗藥性評估。 77
圖 4 1、研究設計與研究流程示意圖。 80
圖 4 2、CPP 修飾 VLPs 之步驟簡圖。 82
圖 4 3、EPI 透過核酸親和力吸附的方式進入 VLPs 之模擬影像。 88
圖 4 4、EPI 之包覆途徑確認實驗。 90
圖 4 5、VLPs之包裝特性。 92
圖 4 6、CPP修飾與穩定性分析。 93
圖 4 7、CPP-VLPs 的細胞攝取效率分析。 95
圖 4 8、VLPs為載體之EPI毒性測試。 96
圖 4 9、注射 68Ga-DOTA 標記的 CPP-gVLPs 後原位腦腫瘤模型的體內 PET/CT 成像。 98
圖 4 10、CED 注射後的組織病理學分析。 101
圖 4 11、使用螢光顯微鏡觀察 CED 注射游離態 EPI 或 EPI@CPP-gVLPs 3小時之後在大腦中的分佈和腫瘤攝取情形。 102
圖 4 12、以 CED 注射方式評估 EPI@CPP-gVLPs的治療方案。 104
圖 4 13、利用 CED 輸送 EPI@CPP-gVLPs 之腫瘤抑制效率與存活率。 106
圖 4 14、CED 注射 CPP-gVLPs 7 天後動物的血液生化分析。 107
圖 5 1、單 RNAi 輸送前導研究之概念示意圖。 110
圖 5 2、多功能 VLPs 用於降低腦癌抗藥性之基因治療機制圖。 111
圖 5 3、前導研究重要數據。 112
圖 5 4、多功能 RNAi 骨架設計圖與運作概念。 114
圖 5 5、第 2.1 代 b-3WJMG si RNAi 骨架的表達系統設計與鑑定。 123
圖 5 6、包裝b-3WJMG si之VLPs螢光鑑定。 124
圖 5 7、包裝有b-3WJMG si骨架之VLPs之多肽修飾。 125
圖 5 8、第 2.2 代 b-3WJsiEGFR siLUC RNAi 骨架的設計與鑑定。 127
圖 5 9、包有b-3WJsiEGFR siLUC 之VLPs的螢光鑑定。 128
圖 5 10、利用單分子光漂白法檢測單VLP內部所含 b-3WJsiEGFR siLUC 數量。 131
圖 5 11、RNA 包裝於 VLPs 內部的穩定性分析。 134
圖 5 12、TAT 肽修飾與否的 rQβ@b-3WJsiEGFR siLUC 的三維 U87-MG 細胞腫瘤球攝取影像。 136
圖 5 13、RNA 骨架細胞內降解鑑定。 138
圖 5 14、DFHBI-1T 活化 rQβ@b-3WJsiEGFR siLUC 培養的細胞即時影像。 139
圖 5 15、挑選時間局部放大 DFHBI-1T 活化後 rQβ@b-3WJsiEGFR siLUC 處理的細胞初始 (0分鐘) 與40 分鐘的即時影像。 140
圖 5 16、rQβ@b-3WJsiEGFR siLUC 之 RNAi 功能驗證。 143
圖 5 17 、rQβ@b-3WJsiEGFR siLUC 之細胞生長、侵襲能力抑制驗證。 144
圖 5 18、Qβ@b-3WJsiEGFR let-7g的 RNAi 功能性試驗。 147
圖 5 19、EGFR 抑制和輸送 let-7g 導致 NFκB 抑制的可能機制。 148
圖 5 20、動物腦部以 CED 注射 Qβ@b-3WJsiEGFR let-7g 之螢光追蹤結果。 149
圖 5 21、注射 Qβ@b-3WJsiEGFR let-7g 治療後小鼠的腦 MRI 圖像。 151
圖 5 22、動物實驗隻小鼠腫瘤成長速率與動物存活率。 153
圖 6 1、利用 VLPs 作為多功能整合型治療應用平台的概念圖。 166
圖 7 1、本研究中自 Qβ 噬菌體 VLPs 衍生出的各種延伸應用之概念圖。 167

表次
表 1 1、GSH 之檢測方法及比較表。 17
表 2 1、本研究各應用主題與對應之 VLPs 品系對照表。 42
表 3 1、以DLS測量用 5mM GSH 處理前後的 VLPs之粒徑與PI值。 63
表 3 2、使用 LFPB 進行 GSH 標準添加的回收率測試。 73
表 4 1、本研究中所使用的引子序列與對應的酶切位點 (restriction sites)。 81
表 4 2、以DLS測量 gVLPs、EPI@gVLPs、與 EPI@CPP-gVLPs 之粒徑。 91
參考文獻 References
參考文獻
1. C. R. G. del Alcazar; P. K. Todorova; A. A. Habib; B. Mukherjee; S. Burma, Augmented HR repair mediates acquired temozolomide resistance in glioblastoma. Molecular Cancer Research 2016, 14, 928-940.
2. S. Kewitz; M. Stiefel; C. M. Kramm; M. S. Staege, Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells. Leukemia Research 2014, 38, 138-143.
3. M. E. Hegi ; A. C. Diserens ; T. Gorlia ; M. F. Hamou ; N. de Tribolet ; M. Weller, et al., MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine 2005, 352, 997-1003.
4. M. Westphal; Z. Ram; V. Riddle; D. Hilt; E. Bortey, Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochirurgica (Wien) 2006, 148, 269-275
5. L. S. Ashby; K. A. Smith; B. Stea, Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World Journal of Surgical Oncology 2016, 14, 225-225.

6. M. Westphal; D. C. Hilt; E. Bortey; P. Delavault; R. Olivares; P. C. Warnke, et al., A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 2003, 5, 79-88.
7. K. Saito; K. Yamasaki; K. Yokogami; A. Ivanova; G. Takeishi; Y. Sato, et al., Eosinophilic meningitis triggered by implanted Gliadel wafers: case report. Journal of Neurosurgery 2016, 126, 1783-1787.
8. L. Goldwirt; K. Beccaria; A. Carpentier; R. Farinotti; C. Fernandez, Irinotecan and temozolomide brain distribution: a focus on ABCB1. Cancer Chemotherapy and Pharmacology 2014, 74, 185-193.
9. T. Shoji; M. Kanamori; J. Inoue; R. Saito; Y. Osada; Y. Shimoda, et al., Hepatitis B virus reactivation during temozolomide administration for malignant glioma. International Journal of Clinical Oncology 2021, 26, 305-315.
10. M. Y. Li; P. Yang; Y. W. Liu; C. B. Zhang; K. Y. Wang; Y. Y. Wang, et al., Low c-MET expression levels are prognostic for and predict the benefits of temozolomide chemotherapy in malignant gliomas. Scientific Reports 2016, 6, 1-10.
11. R. Stupp; M. E. Hegi; W. P. Mason; M. J. van den Bent; M. J. Taphoorn; R. C. Janzer, et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet. Oncology 2009, 10, 459-466.
12. R. Stupp; W. P. Mason; M. J. van den Bent; M. Weller; B. Fisher; M. J. Taphoorn, et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine 2005, 352, 987-996.
13. M. J. Rohovie; M. Nagasawa; J. R. Swartz, Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioengineering & Translational Medicine 2017, 2, 43-57.
14. R. Golmohammadi; K. Fridborg; M. Bundule; K. Valegard; L. Liljas, The crystal structure of bacteriophage Q beta at 3.5 A resolution. Structure (London, England : 1993) 1996, 4, 543-554.
15. J. K. Rhee; M. Hovlid; J. D. Fiedler; S. D. Brown; F. Manzenrieder; H. Kitagishi, et al., Colorful virus-like particles: fluorescent protein packaging by the Qbeta capsid. Biomacromolecules 2011, 12, 3977-3981.
16. P. Y. Fang; L. M. Gomez Ramos; S. Y. Holguin; C. Hsiao; J. C. Bowman; H. W. Yang, et al., Functional RNAs: combined assembly and packaging in VLPs. Nucleic Acids Research 2017, 45, 3519-3527.

17. G. Destito; A. Schneemann; M. Manchester, Biomedical nanotechnology using virus-based nanoparticles. Current Topics in Microbiology and Immunology 2009, 327, 95-122.
18. F. A. Galaway; P. G. Stockley, MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Molecular Pharmaceutics 2013, 10, 59-68.
19. Y. Ma; R. J. M. Nolte; J. J. L. M. Cornelissen, Virus-based nanocarriers for drug delivery. Advanced Drug Delivery Reviews 2012, 64, 811-825.
20. M. Purwar; J. K. Pokorski; P. Singh; S. Bhattacharyya; H. Arendt; J. DeStefano, et al., Design, display and immunogenicity of HIV1 gp120 fragment immunogens on virus-like particles. Vaccine 2018, 36, 6345-6353.
21. R. Basu; L. Zhai; A. Contreras; E. Tumban, Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine 2018, 36, 1256-1264.
22. B. J. Ward; P. Gobeil; A. Séguin; J. Atkins; I. Boulay; P. Y. Charbonneau, et al., Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nature Medicine 2021, 27, 1071-1078.
23. J. K. Rhee; M. Baksh; C. Nycholat; J. C. Paulson; H. Kitagishi; M. G. Finn, Glycan-Targeted Virus-like Nanoparticles for Photodynamic Therapy. Biomacromolecules 2012, 13, 2333-2338.
24. S. J. Kaczmarczyk; K. Sitaraman; H. A. Young; S. H. Hughes; D. K. Chatterjee, Protein delivery using engineered virus-like particles. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 16998-17003.
25. X. Huang; L. M. Bronstein; J. Retrum; C. Dufort; I. Tsvetkova; S. Aniagyei, et al., Self-assembled virus-like particles with magnetic cores. Nano Letters 2007, 7, 2407-2416.
26. M. L. Hovlid; J. L. Lau; K. Breitenkamp; C. J. Higginson; B. Laufer; M. Manchester, et al., Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS Nano 2014, 8, 8003-8014.
27. S. Qazi; H. M. Miettinen; R. A. Wilkinson; K. McCoy; T. Douglas; B. Wiedenheft, Programmed self-assembly of an active p22-cas9 nanocarrier system. Molecular Pharmaceutics 2016, 13, 1191-1196.
28. X. Han; Z. Man; S. Xu; L. Cong; Y. Wang; X. Wang, et al., A gold nanocluster chemical tongue sensor array for Alzheimer's disease diagnosis. Colloids and Surfaces. B, Biointerfaces 2019, 173, 478-485.
29. Z. Huang; M. Wang; Z. Guo; H. Wang; H. Dong; W. Yang, Aggregation-enhanced emission of gold nanoclusters induced by serum albumin and its application to protein detection and fabrication of molecular logic gates. ACS Omega 2018, 3, 12763-12769.
30. J. Feng; P. Huang; S. Shi; K. Y. Deng; F. Y. Wu, Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: A promising powerful tool for identifying cancer cells. Analytica Chimica Acta 2017, 967, 64-69.
31. M. C. Stark; M. A. Baikoghli; T. Lahtinen; S. Malola; L. Xing; M. Nguyen, et al., Structural characterization of site-modified nanocapsid with monodispersed gold clusters. Scientific Reports 2017, 7, 1-11.
32. A. Zensi; D. Begley; C. Pontikis; C. Legros; L. Mihoreanu; S. Wagner, et al., Albumin nanoparticles targeted with ApoE enter the CNS by transcytosis and are delivered to neurones. Journal of Controlled Release 2009, 137, 78-86.
33. M. Kinoshita; N. McDannold; F. A. Jolesz; K. Hynynen, Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proceedings of the National Academy of Sciences 2006, 103, 11719-11723.
34. L. H. Treat; N. McDannold; N. Vykhodtseva; Y. Zhang; K. Tam; K. Hynynen, Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. International Journal of Cancer 2007, 121, 901-907.
35. R. H. Bobo; D. W. Laske; A. Akbasak; P. F. Morrison; R. L. Dedrick; E. H. Oldfield, Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences of the United States of America 1994, 91, 2076-2080.
36. E. Allard; C. Passirani; J. P. Benoit, Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009, 30, 2302-2318.
37. X. Fan; B. D. Nelson; Y. Ai; D. K. Stiles; D. M. Gash; P. A. Hardy, et al., Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques. Journal of Neurosurgery 2015, 123, 1569-1577.
38. F. Ganzina, 4'-epi-doxorubicin, a new analogue of doxorubicin: a preliminary overview of preclinical and clinical data. Cancer Treatment Reviews 1983, 10, 1-22.
39. N. R. Bachur; F. Yu; R. Johnson; R. Hickey; Y. Wu; L. Malkas, Helicase inhibition by anthracycline anticancer agents. Molecular Pharmacology 1992, 41, 993-998.
40. P. Jiang; R. Mukthavavam; Y. Chao; I. S. Bharati; V. Fogal; S. Pastorino, et al., Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine 2014, 12, 1-13.
41. S. Quader; X. Liu; Y. Chen; P. Mi; T. Chida; T. Ishii, et al., cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. Journal of Controlled Release 2017, 258, 56-66.
42. S. M. Taghdisi; N. M. Danesh; A. Sarreshtehdar Emrani; K. Tabrizian; M. Zandkarimi; M. Ramezani, et al., Targeted delivery of Epirubicin to cancer cells by PEGylated A10 aptamer. Journal of Drug Targeting 2013, 21, 739-744.
43. R. Yazdian-Robati; M. Ramezani; S. H. Jalalian; K. Abnous; S. M. Taghdisi, Targeted delivery of epirubicin to cancer cells by polyvalent aptamer system in vitro and in vivo. Pharmaceutical Research 2016, 33, 2289-2297.
44. M. Y. Hanafi-Bojd; M. R. Jaafari; N. Ramezanian; M. Xue; M. Amin; N. Shahtahmassebi, et al., Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 2015, 89, 248-258.
45. T. Inoue; Y. Yamashita; M. Nishihara; S. Sugiyama; Y. Sonoda; T. Kumabe, et al., Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models. Neuro-oncology 2009, 11, 151-157.
46. A. I. Mehta; B. D. Choi; R. Raghavan; M. Brady; A. H. Friedman; D. D. Bigner, et al., Imaging of convection enhanced delivery of toxins in humans. Toxins (Basel) 2011, 3, 201-206.
47. M. Wang; H. Kommidi; U. Tosi; H. Guo; Z. Zhou; M. E. Schweitzer, et al., A murine model for quantitative, real-time evaluation of convection-enhanced delivery (RT-CED) using an 18-[F]-positron emitting, fluorescent derivative of dasatinib. Molecular Cancer Therapeutics 2017, 16, 2902-2912.
48. P. Chittiboina; J. D. Heiss; K. E. Warren; R. R. Lonser, Magnetic resonance imaging properties of convective delivery in diffuse intrinsic pontine gliomas. Journal of Neurosurgery. Pediatrics 2014, 13, 276-282.
49. J. C. Burnett; J. J. Rossi, RNA-based therapeutics: current progress and future prospects. Chemistry & Biology 2012, 19, 60-71.
50. A. Khaled; S. Guo; F. Li; P. Guo, Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Letters 2005, 5, 1797-1808.
51. C. Chen; P. Guo, Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. Journal of Virology 1997, 71, 495-500.
52. T. J. Lee; J. Y. Yoo; D. Shu; H. Li; J. Zhang; J. G. Yu, et al., RNA nanoparticle-based targeted therapy for glioblastoma through inhibition of oncogenic mir-21. Molecular Therapy 2017, 25, 1544-1555.
53. J. A. Smith; A. Braga; J. Verheyen; S. Basilico;S. Bandiera; C. Alfaro-Cervello, et al., RNA nanotherapeutics for the amelioration of astroglial reactivity. Molecular Therapy - Nucleic Acids 2018, 10, 103-121.
54. Y. Shu; H. Yin; M. Rajabi; H. Li; M. Vieweger; S. Guo, et al., RNA-based micelles: A novel platform for paclitaxel loading and delivery. Journal of Controlled Release 2018, 276, 17-29.
55. A. A. Brandes; E. Franceschi; A. Tosoni; M. E. Hegi; R. Stupp, Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clinical Cancer Research 2008, 14, 957-960.
56. A. J. Wong; J. M. Ruppert; S. H. Bigner; C. H. Grzeschik; P. A. Humphrey; D. S. Bigner, et al., Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 2965-2969.
57. E. Padfield; H. P. Ellis; K. M. Kurian, Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Frontiers in Oncology 2015, 5, 1-8.
58. K. Liffers; K. Lamszus; A. Schulte, EGFR amplification and glioblastoma stem-like cells. Stem Cells International 2015, 2015, 1-12.
59. K. J. Hatanpaa; S. Burma; D. Zhao; A. A. Habib, Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia (New York, N.Y.) 2010, 12, 675-684.
60. K. Wang; J. O. Park; M. Zhang, Treatment of glioblastoma multiforme using a combination of small interfering RNA targeting epidermal growth factor receptor and β-catenin. The Journal of Gene Medicine 2013, 15, 42-50.
61. J. Ji; L. Zhao; A. Budhu; M. Forgues; H. L. Jia; L.X. Qin, et al., Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology 2010, 52, 690-697.
62. V. B. Sampson; N. H. Rong; J. Han; Q. Yang; V. Aris; P. Soteropoulos, et al., MicroRNA Let-7a Down-regulates MYC and Reverts MYC-Induced Growth in Burkitt Lymphoma Cells. Cancer Research 2007, 67, 9762-9770.
63. C. D. Johnson; A. Esquela-Kerscher; G. Stefani; M. Byrom; K. Kelnar; D. Ovcharenko, et al., The let-7 microrna represses cell proliferation pathways in human cells. Cancer Research 2007, 67, 7713-7722.
64. S. M. Johnson; H. Grosshans; J. Shingara; M. Byrom; R. Jarvis; A. Cheng, et al., RAS is regulated by the let-7 microRNA family. Cell 2005, 120, 635-647.
65. X. Wang; L. Cao; Y. Wang; X. Wang; N. Liu; Y. You, Regulation of let-7 and its target oncogenes (Review). Oncology Letters 2012, 3, 955-960.
66. S. T. Lee; K. Chu; H. J. Oh; W. S. Im; J. Y. Lim; S. K. Kim, et al., Let-7 microRNA inhibits the proliferation of human glioblastoma cells. Journal of Neuro-oncology 2011, 102, 19-24.
67. R. Blum; J. Jacob-Hirsch N. Amariglio; G. Rechavi; Y. Kloog, Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research 2005, 65, 999-1006.
68. H. Arora; R. Qureshi; S. Jin; A. K. Park; W. Y. Park, miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Experimental & Molecular Medicine 2011, 43, 298-304.
69. J. S. Paige; K. Y. Wu; S. R. Jaffrey, RNA mimics of green fluorescent protein. Science (New York, N.Y.) 2011, 333, 642-646.
70. G. S. Filonov; J. D. Moon; N. Svensen; S. R. Jaffrey, Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society 2014, 136, 16299-16308.
71. G. S. Filonov; C. W. Kam; W. Song; S. R. Jaffrey, In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. Chemistry & Biology 2015, 22, 649-660.
72. X. Chen; D. Zhang; N. Su; B. Bao; X. Xie; F. Zuo, et al., Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nature Biotechnology 2019, 37, 1287-1293.
73. C. E. Ashley; E. C. Carnes; G. K. Phillips; P. N. Durfee; M. D. Buley; C. A. Lino, et al., Cell-specific delivery of diverse cargos by bacteriophage ms2 virus-like particles. ACS Nano 2011, 5, 5729-5745.
74. L. S. Chen; M. Wang; W. C. Ou; C. Y. Fung; P. L. Chen; C. F. Chang, et al., Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Therapy 2010, 17, 1033-1041.
75. L. Chang; G. Wang; T. Jia; L. Zhang; Y. Li; Y. Han, et al., Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget 2016, 7, 23988-24004.
76. P. Anand; A. O'Neil; E. Lin; T. Douglas; M. Holford, Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Scientific Reports 2015, 5, 1-10.
77. B. Schwarz; M. Uchida; T. Douglas, Biomedical and catalytic opportunities of virus-like particles in nanotechnology. Advances in Virus Research 2017, 97, 1-60.
78. P. Du; R. Liu; S. Sun; H. Dong; R. Zhao; R. Tang, et al., Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale 2019, 11, 22748-22761.
79. W. M. Aumiller, Jr.; B. W. Davis; E. Hatzakis; C. D. Keating, Interactions of macromolecular crowding agents and cosolutes with small-molecule substrates: effect on horseradish peroxidase activity with two different substrates. The Journal of Physical Chemistry. B 2014, 118, 10624-10632.
80. J. D. Fiedler; M. R. Fishman; S. D. Brown; J. Lau; M. G. Finn, Multifunctional Enzyme Packaging and Catalysis in the Qβ Protein Nanoparticle. Biomacromolecules 2018, 19, 3945-3957.
81. C. Peng; M. Y. Hua; N. S. Li; Y. P. Hsu; Y. T. Chen; C. K. Chuang, et al., A colorimetric immunosensor based on self-linkable dual-nanozyme for ultrasensitive bladder cancer diagnosis and prognosis monitoring. Biosensors and Bioelectronics 2019, 126, 581-589.
82. G. Chen; B. Ma; Y. Wang;S. Gong, A Universal GSH-Responsive Nanoplatform for the Delivery of DNA, mRNA, and Cas9/sgRNA Ribonucleoprotein. ACS Applied Materials & Interfaces 2018, 10, 18515-18523.
83. Q. Cheng; H. Yin; C. Sun; L. Yue; Y. Ding; W. Dehaen, et al., Glutathione-responsive homodithiacalix[4]arene-based nanoparticles for selective intracellular drug delivery. Chemical Communications 2018, 54, 8128-8131.
84. S. S. Li; Q. Y. Guan; M. Zheng; Y. Q. Wang; D. Ye; B. Kang, et al., Simultaneous quantification of multiple endogenous biothiols in single living cells by plasmonic Raman probes. Chemical Science 2017, 8, 7582-7587.
85. L. Y. Niu; Y. Z. Chen; H. R. Zheng; L. Z. Wu; C. H. Tung; Q. Z. Yang, Design strategies of fluorescent probes for selective detection among biothiols. Chemical Society Reviews 2015, 44, 6143-6160.
86. M. Tian; F. Guo; Y. Sun; W. Zhang F. Miao; Y. Liu, et al., A fluorescent probe for intracellular cysteine overcoming the interference by glutathione. Organic & Biomolecular Chemistry 2014, 12, 6128-6133.
87. C. M. Alexander; M. M. Maye; J. C. Dabrowiak, DNA-capped nanoparticles designed for doxorubicin drug delivery. Chemical Communications 2011, 47, 3418-3420.
88. Q. Zeng; H. Wen; Q. Wen; X. Chen; Y. Wang; W. Xuan, et al., Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 2013, 34, 4632-4642.
89. R. L. C. Leung; M. D. M. Robinson; A. A. A. Ajabali; G. Karunanithy; B. Lyons; R. Raj, et al., Monitoring the disassembly of virus-like particles by F-19-NMR. Journal of the American Chemical Society 2017, 139, 5277-5280.
90. J. H. Beijnen; O. A. G. J. van der Houwen; W. J. M. Underberg, Aspects of the degradation kinetics of doxorubicin in aqueous solution. International Journal of Pharmaceutics 1986, 32, 123-131.
91. N. Dube; J. Y. Shu; H. Dong; J. W. Seo; E. Ingham; A. Kheirolomoom, et al., Evaluation of doxorubicin-loaded 3-helix micelles as nanocarriers. Biomacromolecules 2013, 14, 3697-3705.
92. N. Schmidt; A. Mishra; G. H. Lai; G. C. Wong, Arginine-rich cell-penetrating peptides. FEBS Letters 2010, 584, 1806-1813.
93. J. Cummings; C. S. McArdle, Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. British Journal of Cancer 1986, 53, 835-838.
94. H. H. Pang; C. Y. Huang; Y. W. Chou; C. J. Lin; Z. L. Zhou; Y. L. Shiue, et al., Bioengineering fluorescent virus-like particle/RNAi nanocomplexes act synergistically with temozolomide to eradicate brain tumors. Nanoscale 2019, 11, 8102-8109.
95. X. H. Zhang; Y. Qian; Z. Li; N. N. Zhang; Y. J. Xie, Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncology Reports 2016, 36, 2967-2975.
96. T. Eitsuka; N. Tatewaki; H. Nishida; K. Nakagawa; T. Miyazawa, Synergistic anticancer effect of tocotrienol combined with chemotherapeutic agents or dietary components: a review. International Journal of Molecular Sciences 2016, 17, 1-18.
97. M. Volcic; S. Karl; B. Baumann; D. Salles; P. Daniel; S. Fulda, et al., NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Research 2012, 40, 181-195.
98. W. T. t. Mills; N. N. Nassar; D. Ravindra; X. Li; M. K. Meffert, Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020, 9, 1-16.
99. X. Jiang; D. Q. Feng; G. Liu; D. Fan; W. Wang, A fluorescent switch sensor for detection of anticancer drug and ctDNA based on the glutathione stabilized gold nanoclusters. Sensors and Actuators B: Chemical 2016, 232, 276-282.
100. D. M. Lin; B. Koskella; H. C. Lin, Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics 2017, 8, 162-173.
101. E. J. Lee; N. K. Lee; I. S. Kim, Bioengineered protein-based nanocage for drug delivery. Advanced Drug Delivery Reviews 2016, 106, 157-171.
102. E. Tumban; J. Peabody; D. S. Peabody; B. Chackerian, A Pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PloS One 2011, 6, 1-11.
103. J. C. Caldeira; D. S. Peabody, Stability and assembly in vitro of bacteriophage PP7 virus-like particles. Journal of Nanobiotechnology 2007, 5, 1-10.
104. D. B. Leneghan; K. Miura; I. J. Taylor; Y. Li; J. Jin; K. D. Brune, et al., Nanoassembly routes stimulate conflicting antibody quantity and quality for transmission-blocking malaria vaccines. Scientific Reports 2017, 7, 1-14.
105. M. Shishovs; J. Rumnieks; C. Diebolder; K. Jaudzems; L. B. Andreas; J. Stanek, et al., Structure of AP205 coat protein reveals circular permutation in ssRNA Bacteriophages. Journal of Molecular Biology 2016, 428, 4267-4279.
106. A. C. Tissot; R. Renhofa; N. Schmitz; I. Cielens; E. Meijerink; V. Ose, et al., Versatile virus-like particle carrier for epitope based vaccines. PloS One 2010, 5, 1-8.
107. P. L. Chariou; A. B. Dogan; A. G. Welsh; G. M. Saidel; H. Baskaran; N. F. Steinmetz, Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology 2019, 14, 712-718.
108. Y. P. Zhu; C. Li; X. Y. Wan; Q. Yang; G. S. Xie; J. Huang, Delivery of plasmid DNA to shrimp hemocytes by Infectious hypodermal and hematopoietic necrosis virus (IHHNV) nanoparticles expressed from a baculovirus insect cell system. Journal of Invertebrate Pathology 2019, 166, 1-6.
109. S. Ramos-Carreño; I. Giffard-Mena; J. N. Zamudio-Ocadiz; A. Nuñez-Rivera; R. Valencia-Yañez; J. Ruiz-Garcia, et al., Antiviral therapy in shrimp through plant virus VLP containing VP28 dsRNA against WSSV. Beilstein Journal of Organic Chemistry 2021, 17, 1360-1373.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-04
校外 Off-campus:開放下載的時間 available 2026-08-04

您的 IP(校外) 位址是 18.116.87.126
現在時間是 2025-05-11
論文校外開放下載的時間是 2026-08-04

Your IP address is 18.116.87.126
The current date is 2025-05-11
This thesis will be available to you on 2026-08-04.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-08-04

QR Code