論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available
論文名稱 Title |
採用極座標調制之射頻發射機 RF Transmitters Using Polar Modulation |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
77 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2004-06-28 |
繳交日期 Date of Submission |
2004-07-05 |
關鍵字 Keywords |
S類功率放大器、波包消除重建發射機、採用極座標調制之射頻發射機 RF Transmitters Using Polar Modulation, Class-S Power Amplifier, Envelope Elimination and Restoration Transmitter |
||
統計 Statistics |
本論文已被瀏覽 5778 次,被下載 7511 次 The thesis/dissertation has been browsed 5778 times, has been downloaded 7511 times. |
中文摘要 |
改良傳統波包消除重建發射機架構,捨棄了萃取波包與相位訊號的偵測器與限制器等類比元件,改以數位訊號處理之極座標轉換技術取代,並對波包訊號採取差異積分調制,可抑制量化雜訊並適合單晶片系統化。發射機前端功率放大器電路部分,採用高效率S類功率放大器與E類功率放大器設計,分別放大波包與相位訊號並加以結合。採用極座標調制之射頻發射機技術在傳送高PAPR值之數位調制載波訊號時,具有超高效率與良好線性度等優點,以實際傳送1 Msps QPSK調制之900 MHz載波訊號為例,在發射功率超過23 dBm時量測所得之轉換效率高達60%,ACPR值大於34dB,EVM值小於6.5%。 |
Abstract |
This thesis improved the structure of traditional envelope elimination and restoration transmitter by replacing the analog components of envelope detector and limiter using digital processing technique of polar transformation. Envelope signal was modulated by delta-sigma modulation, which could suppress the quantization noise and would be good for integrated circuit design. The front end analog circuits of transmitter used high efficiency class-S and class-E power amplifiers to amplify envelope and phase signal separately and finally combined them at the output of class-E power amplifier. The RF transmitters using polar modulation had advantages of high efficiency and linearity when transmitting high PAPR-valued digital modulation signals. For example, when transmitting the QPSK-modulated signal with 900MHz carrier and 1Msps data rate, the transmitter was measured with efficiency as high as 60%, ACPR above 34dB, and EVM less than 6.5%. |
目次 Table of Contents |
第一章 緒論 1.1 背景簡介 1.2 章節規劃 第二章 相位路徑與波包路徑設計 2.1 相位路徑設計 A. 理想E類功率放大器架構簡介 B. 混合式E類功率放大器設計與量測 2.2 波包還原路徑設計 2.2.1 差異積分調制簡介 2.2.2 切換式直流轉換器簡介 A. Buck type切換式直流轉換器 B. Boost type切換式直流轉換器 C. BuckBoost type切換式直流轉換器 2.2.3 S類功率放大器 A. S類功率放大器模擬 B. 混合式S類功率放大器量測 C. TSMC 0.18μm製程S類功率放大器設計與量測 第三章 採用極座標調制之射頻發射機架構模擬 3.1 兩路時間延遲差理論分析 3.2 系統整合模擬 3.2.1 傳播時間延遲差 3.2.2 超額取樣率 3.3 採用極座標調制之射頻發射機數位調制模擬 A. 500k symbols/s QPSK B. 1M symbols/s QPSK C. 500k symbols/s π/4-DQPSK 第四章 採用極座標調制之射頻發射機量測 4.1 雙調連續訊號測試之理論分析 4.2 雙調連續訊號測試之量測結果 A. 理想波包訊號下之混合式E類功率放大器量測 B. 混合式S類功率放大器所產生之波包訊號下之E類功率放大器量測 4.3 數位調制訊號測試之量測結果 4.3.1 基頻資料率500k symbols/s之QPSK調制訊號測試 A. 理想波包訊號下之發射機輸出訊號量測 B. 混合式S類功率放大器所產生之波包訊號下之發射機輸出訊號量測 4.3.2 基頻資料率1M symbols/s之QPSK調制訊號測試 4.3.3 基頻資料率500k symbols/s之π/4-DQPSK調制訊號測試 4.4 發射機量測與模擬結果列表比較 A 雙調連續訊號測試 B. QPSK數位調制訊號測試 C. π/4-DQPSK數位調制訊號測試 第五章 結論 參考文獻 |
參考文獻 References |
[1] L.R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, pp. 803-806, July 1952. [2] H.S. Black, Modulation Theory, D. Van Nosterand Company, 1953. [3] H.L. Krauss, C.W. Bostian, and F.H. Raab, Solid State Radio Engineering, John Wiley & Sons, pp. 458-468, 1980. [4] P.B. Kenington, High-Linearity RF Amplifier Design, Artech House, pp. 425-443, 2000. [5] D. Su and W. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 1998, pp. 54-55. [6] S. Abedinpour, K. Deligoz, J. Desai, M. Figiel, and S. Kiaei, “Monolithic supply modulated RF power amplifier and DC-DC power converter IC,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 8-10. [7] A.J. Frazier and M.K. Kazimierzuk, “DC-AC power inversion using Σ-Δ modulation,” IEEE Transactions on Circuits and Systems, vol. 47, pp. 79-82, Jan. 2000. [8] K.C. Tsai and P.R. Gray, “A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962-970, July 1999. [9] S.H.L. Tu and C. Toumazou, “Highly efficient CMOS class E power amplifier for wireless communications,” in Proc. IEEE Int. Symp. Circuit and Systems, vol. 3, 1998, pp. 530-533. [10] G.K. Wang and S.I. Long, “An 800 MHz HBT class-E amplifier with 74% PAE at 3.0 volts for GMSK,” in GaAs IC Symp. Tech. Dig., 1999, pp. 299-302. [11] D.K Choi and S.I. Long, “A physically based analytic model of FET class-E power amplifiers – designing for maximun PAE,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1712-1720, Sept. 1999. [12] A.J. Wilkinson and J.K.A. Everard, “Transmission-line load-network topology for Class-E power amplifier,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1202-1210, June 2001. [13] C.S.Yu, W.S. Chan, and W.L. Chan, “1.9 GHz low loss varactor diode predister,” Electron. Lett., vol. 35, no. 20, pp. 1681-1682, Sept. 1999. [14] Y. Kim, Y. Shin, and S. Im, “A memory mapping predistorter for the compensation with memory in OFDM systems,” in Proc. IEEE Vehicular Technology Conference, vol. 1, 1999, pp. 685-689. [15] M. Faulkner and M. Johansson, “Adaptive linearization using predictor tion – experimental results,” IEEE Transactions on Vehicular Technology, vol. 43, pp. 323-332, May 1994. [16] P.B. Kenington, “Efficiency of feedforward amplifiers,” IEE Proc. Circuits, Devices and Systems, vol. 139, pp. 591-593, Oct. 1992. [17] P.B. Kenington and D.W. Bennett, “Linear distortion correction using a feedforward system,” IEEE Transactions on Vehicular Technology, vol. 45, pp. 74-81, Feb. 1996. [18] F.H. Raab, B.E. Sigmon, R.G. Myers, and R.M. Jackson, “L-Band transmitter using Kahn EER technique,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2220-2225, Dec. 1998. [19] F.H. Raab and D.J. Rupp, “High efficiency single sideband HF/VHF transmitter based upon envelope elimination and restoration,” in Proc. Sixth International Conference on HF Radio Systems and Techniques, July 1994, pp. 21–25. [20] T. Sowlati, Y. Greshishchev, C. Salama, T. Andre, G. Rabjohn, and J. Sitch, “Linear transmitter design using high efficiency class E amplifier,” in Proc. Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, Sept. 1995, pp. 1233-1237. [21] P.B. Kenington, High-Linearity RF Amplifier Design, Artech House, pp. 429-436, 2000. [22] W.B. Sander, S.V. Schell, and B.L. Sander, “Polar modulator for multi- mode cell phones”, in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2003, pp. 439-445. [23] A. Hadjichristors, “Transmit architectures and power control schemes for low cost highly integrated transceivers for GSM/EDGE applications”, in Proc. IEEE Int. Symp. Circuits and Systems ISCAS’03, May 2003, pp. III610 - III613. [24] E. McCune, “Multi-mode and multi-band polar transmitter for GSM, NADC, and EDGE”, in IEEE WCNC, vol. 2, Mar. 2003, pp. 812-815. [25] N.O. Sokal and A.D. Sokal, “Class-E-A new class of high efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975. [26] K.C. Tsai and P.R. Gray, “A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962-970, July 1999. [27] C.S. Yoo and Q.T. Huang, “A common-gate switched, 0.9 W class-E power amplifier with 41% PAE in 0.25 μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 56-57, May 2001. [28] W. Abey, T. Kawai, I. Okamoto, M. Suzuki, C. Khandavalli, W. Kennan, Y. Tateno, M. Nagahara, and M. Takikaka, “An E-mode GaAs FET power amplifier MMIC for GSM phones,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 1315-1318. [29] T. Sowlati, C. Andre, T. Salama, J. Sitch, G. Rabjohn, and D. Smith, “Low voltage, high Efficiency class E GaAs power amplifiers for mobile communications,” in GaAs IC Symp. Tech. Dig., 1994, pp. 171-174. [30] 朱健程,高效率2.4 GHz E類功率放大器單晶微波積體電路及模組之設計與實作,國立中山大學電機工程研究所碩士論文,2003。 [31] N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics : Converters, Applications, and Design, Wiley, 1989. [32] DC-DC Converter Basics. [Online]. Available: http://www.powerdesign ers.com/InfoWeb/design_center/articles/DC-DC/converter.shtm [33] DC-DC Converter Tutorial. [Online]. Available: http://www.maxim-ic. com/appnotes.cfm/appnote_number/710/ln/en [34] F.H. Raab and D.J. Rupp, “Class-S high efficiency amplitude modulator,” RF Design, vol. 17, pp. 70-74, May 1994. [35] Apex Microtechnology Corp.(2001) PWM low pass filtering appilication note 32. [Online]. Available: http://www.APEXMICROTECH.com [36] B. Williams and F. J. Taylor, Electronic Filter Design HandBook, New York: McGraw-Hill, 1988. [37] On Semiconductor, “Power MOSFET”, NTR1P02T1 Data Sheet, 2002. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外完全公開 unrestricted 開放時間 Available: 校內 Campus: 已公開 available 校外 Off-campus: 已公開 available |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |