論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2031-08-05
校外 Off-campus:開放下載的時間 available 2031-08-05
論文名稱 Title |
運用鎖頻迴路追蹤相位之自我注入鎖定生理雷達研究 Research of Self-Injection-Locked Vital Sign Radar Using Frequency-Locked Loop Based Phase-Tracking Technique |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
64 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2021-08-03 |
繳交日期 Date of Submission |
2021-08-05 |
關鍵字 Keywords |
生理訊號、鎖頻迴路、自我注入鎖定迴路、訊雜比、互相關函數 vital signs, frequency-locked loop, self-injection-locked loop, signal-to-noise ratio, cross correlation function |
||
統計 Statistics |
本論文已被瀏覽 251 次,被下載 0 次 The thesis/dissertation has been browsed 251 times, has been downloaded 0 times. |
中文摘要 |
非接觸式生理訊號雷達是近幾年受到關注的科技,與穿戴式和接觸式生理訊號感測裝置相比,不用受到接線或電池使用時間的限制,生理訊號雷達漸漸受到世人擁戴,既可非接觸式偵測也能穿透障礙物。 本論文以2.4 GHz ISM頻帶作為操作頻帶,結合了自我注入鎖定迴路(Self-Injection-Locked loop, SIL loop)與鎖頻迴路(Frequency-Locked Loop, FLL)兩種機制之生理感測器。本系統操作是由雷達發射一連續波訊號至目標物,經目標物反射回來的訊號分為兩路,一路經由90度相移器注入到壓控振盪器中,另一路與發射訊號通過增益相位檢測器(Gain and Phase Detector, GPD)後,經由迴路濾波器控制振盪器的壓控端,這兩種機制都能使壓控振盪器產生頻率調制訊號,最後使用正交頻率解調器即可獲取生理訊號。自我注入鎖定迴路有極佳的靈敏度與抗雜波能力,而鎖頻迴路能在頻寬內抑制壓控振盪器的相位雜訊,使振盪訊號更加純淨,並且具有追蹤相位能力來解決自我注入鎖定迴路的零點問題,使量測更加方便穩定。 |
Abstract |
Non-contact vital sign radar has attracted attention in recent years. Compared with wearable and contact-based vital-sign sensors, non-contact vital-sign radar is not limited by connection wires and battery life. In this thesis, the 2.4 GHz vital sign radar was developed using both self-injection locking (SIL) loop and frequency-locking loop (FLL) mechanisms. The operation of this radar is as follow: The radar transmits a continuous-wave signal to the target. The signal reflected by the target is splitted into two signals; one is injected into the voltage-controlled oscillator (VCO) through a 90-degree phase shifter to form a SIL loop, and the other is processed by the gain/phase detector (GPD) and loop filter to control the tuning signal of the VCO and thus form a FLL. These two loops make the VCO generate a frequency-modulated signal, and the vital-sign signal can be obtained by quadrature frequency-demodulating the output sinal of the VCO. The SIL loop can aid in achieving good detection sensitivity and clutter rejection, and the FLL can suppress the phase noise of the VCO within the FLL bandwidth. Additionally, the FLL can track the phase relative to the target to resolve the detection null-point problem in the SIL loop so as to make the non-contact vital-sign measurement more convenient and stable. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 序論 1 1-1 研究背景與動機 1 1-2 生理雷達的發展 2 1-3 章節規劃 7 第二章 運用鎖頻迴路追蹤相位之自我注入鎖定生理雷達 8 2-1 自我注入鎖定雷達 8 2-2 鎖頻迴路 14 2-3 運用鎖頻迴路追蹤相位之自我注入鎖定雷達 18 2-3-1 時域分析 19 2-3-2 頻域分析 20 2-3-3訊號雜訊比分析 21 2-3-4生理雷達之增益偵測與互相關技術運用 24 第三章 生理感測實驗 26 3-1 雷達系統 26 3-2 訊號雜訊比量測實驗 30 3-2-1電路元件測試 30 3-3-2致動器量測實驗 32 3-3 人體生理訊號量測實驗結果 39 3-3-1人體隨機擺動時之生理訊號偵測 39 3-3-2 跑步機上運動人體之生理訊號檢測 42 第四章 結論與未來展望 49 參考資料 50 |
參考文獻 References |
[1] 血氧濃度偵測儀, Xuite, Jun. 28, 2017. Available: https://blog.xuite.net/home.care/homecare/12313064 [2] 【心電圖】ECG是什麼?如何監測心跳?一文教你讀懂心電圖!, bowtie, Jul. 7, 2020, Available: https://www.bowtie.com.hk/blog/zh/%E5%BF%83%E9% 9B%BB%E5%9C%96-ecg/ [3] Wesley W. S(1946).The Great Detective. Detroit, Michigan: Chrysler Corporation [4] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013 [5] S.-S. Myoung, J.-H. Park, J.-G. Yook, and B.-J. Jang, “2.4 GHz bioradar system with improved performance by using phase-locked loop,” Microw. Opt. Techn. Lett., vol. 52, no. 9, pp. 2074–2076, Sep. 2010. [6] Y. Hong et al., “Noncontact proximity vital sign sensor based on PLL for sensitivity enhancement,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 584-593, Aug. 2014. [7] M. Mercuri, Y. Liu, I. Lorato, T. Torfs, A. Bourdoux, and C. Van Hoof, “Frequency-tracking CW Doppler radar solving small-angle approximation and null point issues in non-contact vital signs monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp. 671-680, June 2017. [8] X. Gao, J. Xu, A. Rahman, V. Lubecke, and O. Boric-Lubecke, “Arc shifting method for small displacement measurement with quadrature CW Doppler radar,” in 2017 IEEE IMS Dig., June 2017, pp. 1003–1006. [9] D. Girbau, A. Lazaro, Á. Ramos and R. Villarino, “Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,” IEEE Sensors J., vol. 12, no. 3, pp. 512-518, March 2012. [10] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May. 2006. [11] Andersen, E., Herleikson, and E.C.: ‘RF signal generator single-loop frequency synthesis, phase noise reduction, and frequency modulation’, Hewlett Packard J., 1989, 40, (5), pp. 27–33. [12] J. M. Ávila-Ruiz, L. Moreno-Pozas, E. Durán-Valdeiglesias, A. Moscoso-Mártir, I. Molina-Fernández, and J. de-Oliva-Rubio, “Frequency locked loop architecture for phase noise reduction in wideband low-noise microwave oscillators,” IET Microw., Antennas Propag., vol. 7, no. 11, pp. 869–875, 2013. [13] E. Ayranci , K. Christensen, and P. Andreani “Enhancement of VCO linearity and phase noise by implementing frequency locked loop,” Proc. EUROCON, Warsaw, Poland, pp. 2593– 2599, Sept. 2007. [14] K.-C. Peng, C.-H. Lee, D.-G. Wang, F.-K. Wang, and T.-S. Horng, “An injection- and frequency-locked loop for reducing phase noise of wideband oscillators,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1374-1383, Mar. 2018. [15] The Cable Phase Difference Detection of Very High Frequency (VHF) Antenna Array Based on Ad8302 [16] K.-C. Peng, C.-H. Lee, D.-G. Wang, F.-K. Wang, and T.-S. Horng, “An injection- and frequency-locked loop for reducing phase noise of wideband oscillators,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1374-1383, Mar. 2018. [17] K.-C. Peng, M.-C. Sung, F.-K. Wang and T. -S. Horng, “A Wireless-Frequency-Locked-Loop-Based Vital Sign Sensor with Quadrature Tracking and Phase-Noise Reduction Capability,” IEEE Sensors Journal, vol. 21, no. 8, pp. 9706-9715, April, 2021. [18] F.-K. Wang, C.-J. Li, C.-H. Hsiao et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112-4120, 2010. [19] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O. Hunaidi, “A model of the correlation function of leak noise in buried plastic pipes,” J. Sound Vib., vol. 277, no. 1, pp. 133–148, Oct. 2004. [20] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang, and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905–1916, Mar. 2019. [21] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase- and self- injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013. [22] 林睿彥,Wi-Fi訊號偵測手勢及深度學習辨識研究,國立中山大學電機工程學系碩士論文,2020。 [23] 宋孟哲,具備相位追蹤能力之生理感測雷達研究,國立中山大學電機工程學系碩士論文,2020。 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2031-08-05 校外 Off-campus:開放下載的時間 available 2031-08-05 您的 IP(校外) 位址是 3.139.108.48 現在時間是 2024-11-22 論文校外開放下載的時間是 2031-08-05 Your IP address is 3.139.108.48 The current date is 2024-11-22 This thesis will be available to you on 2031-08-05. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-05 |
QR Code |