Responsive image
博碩士論文 etd-0708124-173353 詳細資訊
Title page for etd-0708124-173353
論文名稱
Title
以正義理論探討使用者在服務補救後對於擬人化生成式聊天機器人忠誠度之影響
Exploring the Impact of Justice Theory on User Loyalty to Anthropomorphic Generative Chatbots after Service Recovery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2024-06-07
繳交日期
Date of Submission
2024-08-08
關鍵字
Keywords
生成式人工智慧、服務失效、服務補救、正義理論、擬人化
Generative Artificial Intelligence, Service Failure, Service Recovery, Justice Theory, Anthropomorphism
統計
Statistics
本論文已被瀏覽 103 次,被下載 13
The thesis/dissertation has been browsed 103 times, has been downloaded 13 times.
中文摘要
隨著生成式人工智慧的興起,這類的新科技已被運用在許多不同的領域當中,其中最常見的運用便是使用在聊天機器人中,添加生成式人工智慧下的聊天機器人能夠更加理解使用者所欲敘述之事情,也能自己生成新內容,因此不像以往的聊天機器人如此死板。本研究以正義理論探討擬人化生成式聊天機器人在服務補救情境下對使用者忠誠度的影響,並以ChatGPT為例。探討服務補救的策略如何減輕負面情緒,進而影響忠誠度。
本研究使用實驗以及問卷相互結合的方法完成資料的蒐集,受測者需依照給予的指示於ChatGPT進行服務補救過程。在實驗完後再進行填寫問卷。研究結果顯示分配正義(實質性)的補救方式比起互動正義(心理性)的補救方式更能夠緩解使用者負面情緒,而當ChatGPT能夠提供更多樣性的傳遞訊息時,使用者信任度與忠誠度也會更加提升,而當擬人化作用於此類的聊天機器人補救行為上,對於調節負面情緒是正向且會使得不同補救策略之間差異拉近。本研究提出結論以及建議,供後續生成式聊天機器人相關研究作為參考。
Abstract
With the rise of generative artificial intelligence, such technologies have been applied in many different fields, with one of the most common applications being in customer service chatbots. Unlike traditional chatbots, those enhanced with generative AI can better understand what users intend to convey and can generate new content, thus making interactions less rigid. This study explores the impact of anthropomorphized generative chatbots, using ChatGPT as an example, on user loyalty in service recovery contexts from the perspective of justice theory. It examines how service recovery strategies can alleviate negative emotions and subsequently affect loyalty.
This research employs a combination of experiments and surveys to collect data. Participants are instructed to engage with ChatGPT for a service recovery process, followed by completing a questionnaire. The results indicate that distributive justice (substantive recovery) is more effective in alleviating users' negative emotions compared to interactional justice (psychological recovery). Furthermore, when ChatGPT provides a more diverse message delivery to user, user trust and loyalty are also enhanced. However, anthropomorphism in such chatbot recovery actions has a positive effect on moderating negative emotions and narrows the differences between different recovery strategies. This study concludes with recommendations for future research on generative chatbots.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Absract iv
圖次 vi
表次 vii
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的及問題 3
第二章 文獻探討 4
第一節 生成式人工智慧 4
第二節 服務失效與服務補救 5
第三節 正義理論 7
第四節 人機互動 8
第三章 研究方法 10
第一節 研究模型 10
第二節 研究假說 10
第三節 操作型定義 13
第四節 研究設計 15
第四章 資料分析 19
第一節 敘述性統計分析 19
第二節 衡量模型 23
第三節 結構模型與假說驗證 32
第五章 結論與建議 35
第一節 研究結果與建議 35
第二節 研究貢獻 36
第三節 研究限制與未來研究方向 37
參考文獻 38
附錄一–本研究正式問卷 43
附錄二–本研究實驗情境 48
參考文獻 References
Azab, C., & Holmqvist, J. (2022). Discrimination in services: how service recovery efforts change with customer accent. Journal of Business Ethics, 180(1), 355-372.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
Bitner, M. J., Booms, B. H., & Mohr, L. A. (1994). Critical service encounters: The employee's viewpoint. Journal of marketing, 58(4), 95-106.
Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work.
Cao, C., Zhao, L., & Hu, Y. (2019). Anthropomorphism of Intelligent Personal Assistants (IPAs): Antecedents and Consequences. PACIS,
Chebat, J.-C., & Slusarczyk, W. (2005). How emotions mediate the effects of perceived justice on loyalty in service recovery situations: an empirical study. Journal of Business Research, 58(5), 664-673.
Cho, C. H., Phillips, J. R., Hageman, A. M., & Patten, D. M. (2009). Media richness, user trust, and perceptions of corporate social responsibility: An experimental investigation of visual web site disclosures. Accounting, auditing & accountability journal, 22(6), 933-952.
Choi, B., & Choi, B.-J. (2014). The effects of perceived service recovery justice on customer affection, loyalty, and word-of-mouth. European Journal of Marketing, 48(1/2), 108-131.
Crolic, C., Thomaz, F., Hadi, R., & Stephen, A. T. (2022). Blame the bot: Anthropomorphism and anger in customer–chatbot interactions. Journal of marketing, 86(1), 132-148.
Cyr, D., Hassanein, K., Head, M., & Ivanov, A. (2007). The role of social presence in establishing loyalty in e-service environments. Interacting with computers, 19(1), 43-56.
Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management science, 32(5), 554-571.
Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection, and manager performance: Implications for information systems. MIS quarterly, 355-366.
Delcourt, C., Gremler, D. D., Van Riel, A. C., & Van Birgelen, M. (2013). Effects of perceived employee emotional competence on customer satisfaction and loyalty: The mediating role of rapport. Journal of Service Management, 24(1), 5-24.
Deng, L., Turner, D. E., Gehling, R., & Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19(1), 60-75.
Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective indicators in organizational measure development: A comparison and empirical illustration. British journal of management, 17(4), 263-282.
Ding, A., Lee, R. H., Legendre, T. S., & Madera, J. (2022). Anthropomorphism in hospitality and tourism: A systematic review and agenda for future research. Journal of Hospitality and Tourism Management, 52, 404-415.
Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., & Lim, K. H. (2014). Trust, satisfaction, and online repurchase intention. MIS quarterly, 38(2), 407-A409.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage publications Sage CA: Los Angeles, CA.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarterly, 51-90.
Gefen, D., & Straub, D. W. (2004). Consumer trust in B2C e-Commerce and the importance of social presence: experiments in e-Products and e-Services. Omega, 32(6), 407-424.
Goyette, I., Ricard, L., Bergeron, J., & Marticotte, F. (2010). e‐WOM Scale: word‐of‐mouth measurement scale for e‐services context. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration, 27(1), 5-23.
Gremler, D. D., & Gwinner, K. P. (2000). Customer-employee rapport in service relationships. Journal of Service Research, 3(1), 82-104.
Han, N. R., Baek, T. H., Yoon, S., & Kim, Y. (2019). Is that coffee mug smiling at me? How anthropomorphism impacts the effectiveness of desirability vs. feasibility appeals in sustainability advertising. Journal of Retailing and Consumer Services, 51, 352-361.
Harrison-Walker, L. J. (2001). The measurement of word-of-mouth communication and an investigation of service quality and customer commitment as potential antecedents. Journal of Service Research, 4(1), 60-75.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
Johnson, D., Goodman, R., Patrinely, J., Stone, C., Zimmerman, E., Donald, R., Chang, S., Berkowitz, S., Finn, A., Jahangir, E., Scoville, E., Reese, T., Friedman, D., Bastarache, J., van der Heijden, Y., Wright, J., Carter, N., Alexander, M., Choe, J., . . . Wheless, L. (2023). Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. Res Sq. https://doi.org/10.21203/rs.3.rs-2566942/v1
Jones, C. L. E., Hancock, T., Kazandjian, B., & Voorhees, C. M. (2022). Engaging the Avatar: The effects of authenticity signals during chat-based service recoveries. Journal of Business Research, 144, 703-716.
Lee, S. A., & Oh, H. (2021). Anthropomorphism and its implications for advertising hotel brands. Journal of Business Research, 129, 455-464.
Lewis, B. R., & McCann, P. (2004). Service failure and recovery: evidence from the hotel industry. International journal of contemporary hospitality management, 16(1), 6-17.
Liu, D., Lv, Y., & Huang, W. (2023). How do consumers react to chatbots' humorous emojis in service failures. Technology in Society, 73, 102244.
Macintosh, G. (2009). Examining the antecedents of trust and rapport in services: Discovering new interrelationships. Journal of Retailing and Consumer Services, 16(4), 298-305.
Migacz, S. J., Zou, S., & Petrick, J. F. (2018). The “terminal” effects of service failure on airlines: Examining service recovery with justice theory. Journal of Travel Research, 57(1), 83-98.
Miller, J. L., Craighead, C. W., & Karwan, K. R. (2000). Service recovery: a framework and empirical investigation. Journal of operations Management, 18(4), 387-400.
Mimoun, M. S. B., Poncin, I., & Garnier, M. (2017). Animated conversational agents and e-consumer productivity: The roles of agents and individual characteristics. Information & Management, 54(5), 545-559.
Moussawi, S., & Koufaris, M. (2019). Perceived intelligence and perceived anthropomorphism of personal intelligent agents: Scale development and validation.
Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146.
Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls and future research agenda. In (Vol. 47, pp. 1213-1225): Wiley Online Library.
Qiu, L., & Benbasat, I. (2009). Evaluating anthropomorphic product recommendation agents: A social relationship perspective to designing information systems. Journal of management information systems, 25(4), 145-182.
Rönkkö, M., & Ylitalo, J. (2011). PLS marker variable approach to diagnosing and controlling for method variance.
Rapp, A., Curti, L., & Boldi, A. (2021). The human side of human-chatbot interaction: A systematic literature review of ten years of research on text-based chatbots. International Journal of Human-Computer Studies, 151, 102630.
Rawls, J. (1971). Atheory of justice. Cambridge (Mass.).
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121–154. URL https://doi. org/10.1016/j. iotcps, 3.
Smith, A. K., & Bolton, R. N. (2002). The effect of customers' emotional responses to service failures on their recovery effort evaluations and satisfaction judgments. Journal of the academy of Marketing Science, 30, 5-23.
Smith, A. K., Bolton, R. N., & Wagner, J. (1999). A model of customer satisfaction with service encounters involving failure and recovery. Journal of marketing research, 36(3), 356-372.
Song, M., Zhang, H., Xing, X., & Duan, Y. (2023). Appreciation vs. apology: Research on the influence mechanism of chatbot service recovery based on politeness theory. Journal of Retailing and Consumer Services, 73, 103323.
Suh, K.-S. (1998). Effects of Task Characteristics and Medium Experience on Perceived Media Richness and Social Presence. Asia pacific journal of information systems, 8(3), 119-134.
Tax, S. S., Brown, S. W., & Chandrashekaran, M. (1998). Customer evaluations of service complaint experiences: implications for relationship marketing. Journal of marketing, 62(2), 60-76.
Walsh, G., Shiu, E., Schaarschmidt, M., & Hassan, L. M. (2022). Digital presence in service recovery: The interactive effect of customer salutations and employee photographs in email signatures. Psychology & Marketing, 39(12), 2361-2383.
Wan, E. W., & Chen, R. P. (2021). Anthropomorphism and object attachment. Current Opinion in Psychology, 39, 88-93.
Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136.
Yen, C., & Chiang, M.-C. (2021). Trust me, if you can: a study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behaviour & Information Technology, 40(11), 1177-1194.
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1993). The nature and determinants of customer expectations of service. Journal of the academy of Marketing Science, 21, 1-12.
Zhang, T., Kaber, D. B., Zhu, B., Swangnetr, M., Mosaly, P., & Hodge, L. (2010). Service robot feature design effects on user perceptions and emotional responses. Intelligent service robotics, 3, 73-88.
Zhou, Y., Tsang, A. S., Huang, M., & Zhou, N. (2014). Does delaying service-failure resolution ever make sense? Journal of Business Research, 67(2), 159-166.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code