論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
自我注入鎖定雷達之印刷電路板設計 Printed Circuit Board Design of Self-Injection-Locked Radar |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
69 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2018-08-09 |
繳交日期 Date of Submission |
2018-08-10 |
關鍵字 Keywords |
自我注入鎖定雷達 Self-Injection-Locked Radar |
||
統計 Statistics |
本論文已被瀏覽 5807 次,被下載 0 次 The thesis/dissertation has been browsed 5807 times, has been downloaded 0 times. |
中文摘要 |
本論文提出兩組基於自我注入鎖定原理之微小化非接觸式感測雷達系統,從振盪器與不等功率分枝耦合器的設計概念入手,設計SIL振盪器的鎖定範圍、輸出功率、與推導不等功率分枝耦合器的矩陣分析。在論文中段將雷達收發機整合在ADS模擬環境中,透過模擬軟體得知自我注入鎖定雷達收發機的工作狀況,得出模擬與實作有相同的趨勢,最後進行雷達架構的整合,並從頻譜與示波器分析兩雷達模組的效能得出,雷達模組I有較佳的振幅表現,而雷達模組II有較佳的訊號雜訊比表現。 |
Abstract |
This thesis proposes two miniaturized Printed-Circuit-Board(PCB) non-contact radar systems based on Self-Injection-Locked(SIL) principles. According to the design concepts of the oscillator and unequal power branch-line coupler. Design the locking range and power of Self-Injection-Locked Oscillator(SIL Oscillator) and derives the matrix analysis of the unequal power branch-line coupler. In the middle of the papper, the radar transceivers will be integrated into the Advanced Design System (ADS) simulation environment, and the working state of the SIL radar transceivers will be interpreted through a simulated software in order to obtain the same trend in the simulated and implement test environment. Integrated the radar architecture at the end. Showing the ability of this two sets of radar from triangle experiment . The measurement results demonstrate that the first set of radars perform better amplitude , while the second set of radars perform better sensitivity. |
目次 Table of Contents |
圖目錄 i 表目錄 I 第一章 序論 1 1.1 研究背景與動機 1 1.2 非接觸式生理感測雷達現況 2 第二章 自我注入鎖定雷達 5 2.1 自我注入鎖定雷達架構概述 5 2.1.1 自我注入鎖定雷達訊號路徑 5 2.2 自我注入鎖定理論推導 6 2.2.1 自我注入鎖定雷達量測理論 9 2.3 自我注入鎖定振盪器設計原理 11 2.3.1 自我注入鎖定振盪器設計概念 11 2.3.2 振盪器振盪原理 12 2.3.3 設計流程 13 2.3.4 量測結果與模擬 16 2.4 不等功率分枝耦合器設計原理 21 2.4.1 設計概念 21 2.4.2 設計流程 22 2.4.3 量測結果與模擬 24 第三章 微小化PCB雷達模組 27 3.1 雷達感測模組 27 3.2 雷達模組I模擬 29 3.2.1雷達模組I之SIL振盪器模擬 29 3.2.2 微帶線實驗與模擬驗證 31 3.2.3 模擬SIL振盪器負載牽引現象 33 3.3 雷達模組I 35 3.3.1 雷達模組I收發器 35 3.3.2 雷達模組I鑑頻器 36 3.3.3雷達模組I鑑頻器分析 38 3.4 雷達模組II 40 3.4.1雷達模組II收發器 40 3.4.2 雷達模組II鑑頻器 42 3.4.3 雷達模組II鑑頻器分析 43 3.5 雷達模組三角波實驗 45 補充人體量測結果 49 第四章 結論 51 參考文獻 52 |
參考文獻 References |
[1] Rutvij Mahajan, Shantanu Thakurdesai, Gaurav Modak, Sumit Jotrao, Ajinkya Bhat ”Blood pressure measurement using Korotkoff sounds” 2015 International Conference on Industrial Instrumentation and Control (ICIC) College of Engineering Pune, India. May 28-30, 2015. [2] H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, R. C. Hutchinson, “Mobilemonitoring with wearable photoplethysmographic biosensors,” IEEE Engineering in Medicine and Biology Maga-zine, vol. 22, no. 3, pp. 28- 40, May-June 2003. [3] IN數碼. (2018,02,27).[online].https://www.pixpo.net/technology/0IQxsgry.html [4] DIGITIMES企劃.(2015,08,12).[online]. https://www.digitimes.com.tw/iot/ article.asp?cat=130&cat1=50&cat2=20&id=0000438420_rl539qeo3veyo5lyf3l w2. [5] Elgendi, Mohamed. “On the Analysis of Fingertip Photoplethysmogram Signals.” Current Cardiology Reviews 8.1 (2012): 14–25. PMC. Web. 27 July 2018. [6] Rogers, R. R. The early years of Doppler radar in meteorology. In Radar in Meteorology, D. Atlas, Ed. Boston, MA: AMS, 1990, pp. 122–129. [7] R. J. Doviak, D. S. Zrnic, “Doppler Radar and Weather Observations,” Academic Press, 1993, 522p. [8] A. Grant, P. Williams, N. Ward, and S. Basker, “GPS jamming and the impact on maritime navigation,” J. Navigat., vol. 62, no. 2, pp. 173–187, 2009. [9] F. Jiménez et al., “Limitations of positioning systems for developing digital maps and locating vehicles according to the specifications of future driver assistance systems,” IET Intell. Transp. Syst., vol. 5, no. 1, pp. 60–69, 2011. [10] K. D. Rao, M. N. S. Swamy, and E. I. Plotkin, “GPS navigation with increased immunity to modeling errors,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no.1, pp. 2–11, Jan. 2004. [11] C. L. Lin, Y. M. Chang, C. C. Hung, C. D. Tu, and C. Y. Chuang, “Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 5097–5108, Aug. 2015. [12] J. Li et al., “High-altitude radar measurements of ice thickness over the Antarctic and Greenland ice sheets as a part of operation IceBridge,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 742–754, Feb. 2013. [13] J.-F. Nouvel, A. Herique, W. Kofman, and A. Safaeinili, “Radar signal simulation: Surface modeling with the facet method,” Radio Sci., vol. 39, p. RS1013, Feb. 2004. [14] C. Rusch, J. Schäfer, S. Beer, and T. Zwick, “W-band short distance CW-radar antenna optimized by housing design,” in Proc. IEEE iWAT, Mar. 2012, pp. 104–107. [15] S. Stuchly, M. Hamid, and A. Andres, “Microwave surface level monitor,” IEEE Trans. Ind. Electron. Control Instrum., vol. IECI-18, no. 3, pp. 85–92, Aug. 1971. [16] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001 [17] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008 [18] D. K. Barton, Radar System Analysis and Modeling, MI: Artech House, 2005 [19] Bo. Yang and M. Zhang. “Credit-based multiple human location for passive binary pyroelectric infrared sensor tracking system: Free from region partition and classifier,”. IEEE Sens J, 17(1):37–45, Jan 2017. [20] Bo Yang, Jing Luo, and Qi Liu. “A novel low-cost and small-size human tracking system with pyroelectric infrared sensor mesh network”,. Infrared Physics Technology, 63:147 – 156, 2014. [21] E. Fear, P. Meaney, and M. Stuchly, "Microwave for breast cancer detection," IEEE Potentials, vol. 22, pp. 12-18, 2003. [22] M. Baboli, A. Singh, B. Soll, O. Boric-Lubecke, and V. Lubecke, “Good night: sleep monitoring using a physiological radar monitoring system integrated with a polysomnography system,” IEEE Microw. Mag., vol. 16, no. 6, pp. 34–41, Jul. 2015. [23] C. Li, C. Gu, R. Li, and S. B. Jiang, "Radar Motion Sensing for Accurate Tumor Tracking in Radiation Therapy," in 12th Annual IEEE Wireless and Microwave Technology Conference, Clearwater, FL, 2011. [24] A. D. Droitcour, T. B. Seto, Byung-Kwon Park, S. Yamada, A. Vergara, C. El Hourani, T. Shing, A. Yuen, V. M. Lubecke and O. BoricLubecke, "Non-contact respiratory rate measurement validation for hospitalized patients," Engineering in Medicine and Biology Society, EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 4812-4815. [25] C. Li, J. Lin, Y. Xiao, "Robust Overnight Monitoring of Human Vital Signs by a Non-contact Respiration and Heartbeat Detector," Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference, pp. 2235-2238, 2006. [26] Y. Yang and A.E. Fathy, “Development and implementation of a real-time seethrough-wall radar system based on FPGA,” IEEE Trans. Geoscience and Remote Sensing, vol. 47, No. 5, May 2009. [27] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, pp. 697–702, July 1986. [28] FIRM POWER CO,.LTD., PRODUCTS. http://www.firm-power.com/productm Multi_detail.aspx?CategoryID=ddc35392-e490-45ee-82ae-e9ff1512153c&ID=b a295409-df32-49f9-8c52-2447ca99065a [29] Chang Gung Memorial Hospital, 2016.10.27, 核磁共振影像於攝護腺癌之應 用, [online]. http://www.chang-gung.com/news-1.aspx?type=Photo&id=2016 102717273835151&mid=119&bid=3. [30] 硬件再發明, 2015.11.09,雷達非接觸式睡眠監測是什麼黑科技?, [online], https://read01.com/PGeBD.html#.W1o2utUzaM8 [31] Wales Family, 2016.10.19, 威爾斯時尚家居-臺灣總代理SLEEPACE 智能健 康睡眠, [online], https://www.youtube.com/watch?v=odoDWSwH128 [32] A. D. Dr1oitcour, O. Boric-Lubecke, V. M. Lubecke, and J. Lin, “0.25um CMOS and BiCMOS single-chip direct-conversion Doppler radar for remote sensing of vital signs,” in 2002 IEEE Int. SolidState Circuits Conf. Tech. Dig. Papers, pp. 348–349. [33] J. C. Lin, “Non-invasive microwave measurement of respiration,” Proceedings of the IEEE, vol. 63, 1975. [34] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works,” IEEE Communications Letters, 2(2): pp. 36-38, Feb.1998. [35] Anatoliy Boryssenko, “UWB Radar Sensor to Monitor Heart Physiology,” 2011 Loughborough Antennas & Propagation Conference, November 2011 [36] Kazutami Arimoto, Daichi Yamashita, Nao Igawa, Tomoyuki Yokogawa, Yoichiro Sato, Isao Kayano, Akio Shiratori, “A smart low power R-R-I heartbeat monitor system with contactless UWB sensor,” International SoC Design Conference (ISOCC), pp.63-64, 2017 [37] Z. Zhang, X. Zhang, Lv. Hao, G. Lu, X. Jing, J. Wang, “Human-target detection and surrounding structure estimation under a simulated rubble via UWB Radar,” IEEE Geosci. Remote Sens. Lett., 2013, 10, (2), pp. 328–331 [38] TeraSoft鈦思科技, [online], https://www.terasoft.com.tw/support/techpdf/Signa l Processing Design_Design of FMCW Radars for A ctive Safety Applications.pdf [39] J. C. Lin, “Microwave sensing of physiological movement and volume change—A review,” Bioelectromagnetics, vol. 13, pp. 557–565, 1992. [40] A. Droitcour, V. Lubecke, L. Jenshan, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” IEEEMTT-S Int. Microw. Symp. Dig., 2001, vol. 1, pp. 175–178. [41] C. Li, V. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” Microwave Theory and Techniques, IEEE Transactions on, vol. 61, no. 5, pp. 2046–2060, May 2013. [42] F. K. Wang, C. J. Li, C. H. Hsiao, T. S. Horng, J. Lin, K. C. Peng, J. K. Jau, J. Y. Li, and C. C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no.12, pp. 4112-4120, Dec.2010. [43] F. K. Wang, “Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection With Random Body Movement Cancellation,” IEEE Transactions on Microwave Theory and Techniques, VOL.59, NO.12, DECEMBER 2011 [44] F. K. Wang, C. J. Li, C. H. Hsiao, T. S. Horng, J. Lin, K. C. Peng, J. K. Jau, J. Y. Li, C. C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, May 2010, pp. 768-771. [45] F. K. Wang, T. S. Horng, K. C. Peng, J. K. Jau, J. Y. Li, C. C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 696–704, Jan. 2013. [46] R. Adler, “A Study of Locking Phenomena in Oscillators,” Proceedings of the IEEE, VOL. 61, NO. 10, October 1973 [47] N. Reidel, “Electric Circuit,” 8th edition, 2007 [48] D. M. Pozar , “Microwave.Engineering,” 4ed, Wiley, 2012., pp. 334 [49] D. M. Pozar , “Microwave.Engineering,” 4ed, Wiley, 2012., pp187 |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 3.143.214.226 論文開放下載的時間是 校外不公開 Your IP address is 3.143.214.226 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 永不公開 not available |
QR Code |