論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2033-08-10
校外 Off-campus:開放下載的時間 available 2033-08-10
論文名稱 Title |
用於穿牆生命偵測之最佳相位追蹤自我注入鎖定雷達 Optimal Phase-Tracking Self-Injection-Locked Radar for Through-Wall Life Detection |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
61 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-01 |
繳交日期 Date of Submission |
2023-08-10 |
關鍵字 Keywords |
生理雷達、鎖頻迴路、自我注入鎖定雷達、穿牆雷達、生命跡象偵測 vital sign radar, frequency-locked loop, self-injection-locked radar, through-wall radar, life detection |
||
統計 Statistics |
本論文已被瀏覽 84 次,被下載 0 次 The thesis/dissertation has been browsed 84 times, has been downloaded 0 times. |
中文摘要 |
近年來微波雷達已被廣泛應用於生理偵測領域,其中連續波雷達是最常用的一種。為提升感測能力,自我注入鎖定雷達被開發出來,其具有較傳統連續波雷達更優越的靈敏度,因而能夠遠距離檢測因心肺活動引起的細微胸腔運動。然而,自我注入鎖定雷達仍然會受到檢測零點的影響,而且在具有雜波的狀況下,其頻率偏移會影響其感測範圍及靈敏度。為了解決上述問題,本文利用最佳相位追蹤自我注入鎖定雷達來解決檢測零點和頻率偏移的問題。 本論文研究最佳相位追蹤自我注入鎖定雷達,其結合自我注入鎖定雷達和鎖頻迴路兩種技術,以提高雷達感測效能和精確度。其結合方式是在自我注入鎖定雷達的解調端添加鎖頻迴路,使自我注入鎖定迴路的相位保持在180度,以保持在最佳檢測點。此外,本文也運用一個相移器消除雜波的影響,進而提升雷達系統的在不同環境下的感測能力。在進行公式推導和分析後,本文研究的最佳相位追蹤自我注入鎖定雷達系統通過實驗得到了驗證。在實驗中,運用最佳相位追蹤自我注入鎖定雷達穿過水泥牆來監測受試者的生理訊號,實驗結果顯示雷達系統能夠成功且精準偵測出水泥牆後3米內受試者的生命跡象。 |
Abstract |
In recent years, microwave radar has been widely used in the field of vital sign detection, with continuous wave radar being the most commonly used type. To enhance sensing capabilities, self-injection-locked radar has been developed, which offers superior sensitivity compared to traditional continuous wave radar, enabling long-range detection of subtle chest movements caused by cardiopulmonary activities. However, self-injection-locked radar is still affected by the detection null point, and in the presence of clutter, frequency offset can impact the sensing range and sensitivity of the radar system. To address these issues, this paper proposes the use of an optimal phase tracking self-injection-locked radar to overcome the problems of detection null point and frequency offset. This paper also analyzes and measures the performance of the optimal phase tracking self-injection-locked radar, utilizing both self-injection-locked radar and frequency-locked loop techniques, to improve the sensing efficiency and accuracy of the radar. The combination involves adding a frequency-locked loop at the demodulation end of the self-injection-locked radar, ensuring the phase of the self-injection-locked loop remains at 180 degrees, thus maintaining optimal self-injection locking phase. Additionally, this study employ a phase shifter to eliminate the influence of clutter, thereby enhancing the sensing capability of the radar system in different environments. After formula derivation and analysis, the proposed optimal phase tracking self-injection-locked radar system is validated through experiments. In the experiments, the optimal phase tracking self-injection-locked radar is used to monitor the vital signs of a subject located 3 meters behind a concrete wall. The results demonstrate that the radar system can successfully and accurately detect the vital sign of the subject beyond the concrete wall. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 圖次 vi 表次 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 雷達技術演進 3 1-3 章節規劃 6 第二章 系統架構 8 2-1自我注入鎖定迴路及鎖頻迴路 8 2-2雷達系統工作原理及分析 16 2-3系統性能最佳化分析 19 2-4雜波抑制技術分析 25 2-5雷達系統設計 25 第三章 實驗設置與量測結果 30 3-1雜波抑制實驗 30 3-2最佳相位追蹤實驗 33 3-3感測靈敏度實驗 36 3-4人體生理感測實驗 39 3-5穿牆生命偵測實驗 42 第四章 結論及未來展望 47 參考資料 48 |
參考文獻 References |
[1] H. Ye, ‘‘Life detection technique in earthquake search and rescue,’’ Second International Conference on Instr. Meas. Comp. Commun. and Cont. (IMCCC), Harbin, China, 2012, pp. 664-666 [2] M. G. Ehrnsperger, M. Noll, U. Siart, and T. F. Eibert, ‘‘Background and clutter removal techniques for ultra short range radar,’’ in Proc. 17th Eur. Radar Conf. (EuRAD), Jan. 2021, pp. 78–81 [3] Zhang, X. , Derival, M. Albrecht, U. Ampatzidis, Y. ‘‘Evaluation of a ground penetrating radar to map the root architecture of HLB-infected citrus trees,’’ Agronomy 2019, 9, 354. [4] C.-H. Chang and W.-H. Chen, “Vital-sign processing receiver with clutter elimination using servo feedback loop for UWB pulse radar system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp. 292–296, Jan. 2020 [5] ND-SV003 See Through Wall Radar System, Asian military review [online]. Available: https://www.asianmilitaryreview.com/2022/06/through-wall-imaging-technology-novoquads-2d-3d-see-through-wall-radar-systems/ [6] The Xaver 1000 Radar, CAMERO, [online]. Available: https://camero-Techn.com/xaver-products/xaver-1000/ [7] Z. Zhengliang, Y. Degui, Z. Junchao, and T. Feng, “Dataset of human motion status using IR-UWB through-wall radar,” J. Syst. Eng. Electron. vol. 32, no. 5, Oct. 2021, pp.1083 – 1096. [8] Q. Fu and J. Zhang, “Moving target detection based on motion filter and tracking point cohesion for through wall radar,” in Proc. CIE Int. Conf. Radar, Oct. 2016, pp. 1–4. [9] J. Zhang, Q. Liu, B. Jiang and D. Wu, “Adaptive human target tracking and detection algorithm for UWB through wall radar in complex scenes with metal obstacles,” in Conf. Measurement and Signal Processing (ICMSP), Hangzhou, China, 2022, pp. 1036-1039. [10] B. Schleicher, I. Nasr, A. Trasser and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring, ” IEEE Tran. on Micro. Theory and Techn., vol. 61, no. 5, pp. 2076-2085, May 2013. [11] R. J. Fontana, “Recent system applications of short-pulse ultra-wideband (UWB) technology,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2087–2104, Sep. 2004. [12] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004. [13] A. Singh et al., “Data-based quadrature imbalance compensation for a CW Doppler radar system,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1718–1724, Apr. 2013 [14] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010. [15] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, Li J.-Y, and C.-C. Chen, “Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577–3587, Dec. 2011. [16] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, Li J.-Y, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 696–704, Jan. 2013. [17] F.-K. Wang, C.-H. Fang, T.-S. Horng, and K.-C. Peng “Concurrent vital sign and position sensing of multiple individuals using self-injection-Iocked tags and injection-locked I/Q receivers with arctangent demodulation,” IEEE Trans. Microw. Theory Techn., vol. 6 1, no. 12, pp. 4689-4699, Dec. 2013. [18] D. Tang, D. V. Q. Rodrigues, M. C. Brown and C. Li, “Dual null detection points removal and time-domain sensitivity analysis of a self-injection-locked radar for small-amplitude motion sensing,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 9, pp. 4263-4272, Sep. 2022 [19] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905-1916, 1 Mar. 2019 [20] P. -H. Wu, J. -K. Jau, C. -J. Li, T. -S. Horng and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685-695, Jan. 2013 [21] Z. Zhu and M. B. Wakin, “Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences,” in Proc. 3rd Int. Workshop Compressed Sens. Theory Appl. Radar, Sonar Remote Sens. (CoSeRa), Pisa, Italy, 2015, pp. 41-45. [22] N. Takbiri, A. Oncu and R. Dasbasi, “360° variable microwave phase shifter design for clutter cancellation circuitry of life detecting radar,” in Conf. Microw., Radar Wireless Commun.(MIKON), Gdansk, Poland, Jun. 2014, pp. 1-4. [23] J. Zhang and Q.-X. Fu, “Wall parameters measurement and compensation cross-locating detection method for through wall radar,” in Proc. CIE Int. Conf. Radar (RADAR), Oct. 2016, pp. 1–4. [24] A. Kuriakose, D. D. Krishna and S. Anand, “Simulation and analysis of realistic human motion micro-doppler signatures in through-wall radar,” in Int. Conf. on Elec. Commun. and Aerosp. Techn. (ICECA), Coimbatore, India, 2020, pp. 1546-1552, [25] Q.-x. Fu and J. Zhang, “Moving target detection based on motion filter and tracking point cohesion for through wall radar,” in Proc. CIE Int. Conf. Radar (RADAR), Oct. 2016, pp. 1–4. [26] R. Adler, “A study of locking phenomena in oscillators,” in Proc. IRE, vol. 34, no. 6, pp. 351–357, Jun. 1946 [27] J. Gustrau, F. Fiechtner and M. Hoffmann, “VCO linearisation by frequency feedback,” in IEEE Radio Frequency Integrated Circuits Symposium, June 1998, pp. 135–138. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2033-08-10 校外 Off-campus:開放下載的時間 available 2033-08-10 您的 IP(校外) 位址是 18.222.56.71 現在時間是 2024-11-22 論文校外開放下載的時間是 2033-08-10 Your IP address is 18.222.56.71 The current date is 2024-11-22 This thesis will be available to you on 2033-08-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-08-10 |
QR Code |