論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2033-08-10
校外 Off-campus:開放下載的時間 available 2033-08-10
論文名稱 Title |
使用延遲與自我注入鎖定技術之低中頻都卜勒雷達 Low-IF Doppler Radar Using Delay- and Self-Injection-Locking Technology |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
60 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-01 |
繳交日期 Date of Submission |
2023-08-10 |
關鍵字 Keywords |
自我注入鎖定雷達、低中頻都卜勒雷達、數位延遲電路、鏡像拒絕、雜波抵消、生理訊號量測、距離量測 Self-Injection-Locked radar, Low-IF Doppler radar, Digital delay circuit, Image rejection, Clutter cancellation, Vital sign sensing, Distance measurement |
||
統計 Statistics |
本論文已被瀏覽 109 次,被下載 0 次 The thesis/dissertation has been browsed 109 times, has been downloaded 0 times. |
中文摘要 |
本論文提出了一個使用延遲與自我注入鎖定(Delay- and Self-InjectionLocked, DSIL)技術的 5.8GHz 低中頻都卜勒雷達,使用數位延遲電路(Digital Delay Line)與比例積分控制器(Proportional-Integral Controller, PI Controller)即時 補償人體位移所造成的相位偏移,使自我注入鎖定迴路的相位保持在最佳感測 點,不僅解決雷達零點問題,更使得此雷達擁有卓越的擺幅靈敏度與線性度表 現。 同時,此雷達也整合鏡像拒絕電路與雜波抵消電路,以數位電路實現在現 場可程式化邏輯閘陣列(Field Programmable Gate Array, FPGA)內,不僅使雷達系 統大幅數位化,更能精準校正元件所造成的振幅與相位不平衡,使此雷達擁有 絕佳的鏡像拒絕效能,於實驗驗證能夠提供高達 116.85 dB 之鏡像拒絕比例。數 位電路也能快速完成雜波校正所需之計算與調整,免除了使用類比電路調整方 式所可能造成的誤差,也於實驗證明此雷達能有效消除雜波造成的干擾,還原 物體正確位移資訊,使此雷達能夠擁有理論極限的擺幅靈敏度 20.7 微米;受益 於數位電路精準調整的能力也使得線性度表現相較先前類比方法有著大幅度的 提升,在物體等速度移動下經實驗量測得到擺幅靈敏度為 50 微米,而先前類比 方法僅為 100 微米。後續結合了頻移鍵控(Frequency Shift Keying, FSK)調變技術, 使此雷達擁有了量測目標物體距離的能力,於實驗驗證後在不同距離下能夠達 到 3%以內的距離量測誤差。後續將此雷達用於量測人體生理訊號與人體距離, 實驗量測的呼吸及心跳次數與參考裝置的量測結果相符,而距離量測誤差也為 3%左右。 |
Abstract |
This thesis presents a 5.8GHz low-IF Doppler radar based on delay- and selfinjection-locking (DSIL) techniques, utilizing digital delay circuits and proportionalintegral (PI) controllers to compensate for phase shifts caused by human body movement in real time, ensuring that the phase of the self-injection-locked (SIL) loop remains at the optimal point. This resolves the null-point problem and provides excellent measurement sensitivity and linearity performance for the radar. Furthermore, the radar integrates image rejection circuits and clutter cancellation circuits that were implemented in the field-programmable gate array (FPGA) using digital circuits. This simplifies the radar system significantly and allows precise calibration of amplitude and phase imbalances introduced by various components. As a result, the radar achieves outstanding image rejection performance, with an experiment-verified image rejection ratio of up to 116.85 dB. It demonstrates effective clutter cancellation, resulting in obtaining accurate displacement information of the objects, achieving a theoretical sensitivity limit of 20.7 μm. Thanks to the fast and precise adjustment capabilities of digital circuits, the radar's linearity performance is greatly improved compared to previous analog approaches. Experimental results show a sensitivity of 50 μm under constant velocity motion, while the analog approach only achieves 100 μm . Subsequently, frequency shift keying (FSK) modulation is included, providing the radar with the ability to measure the distance to target objects with a measurement error of less than 3% as verified by experiments. Later, the radar is deployed to measure a person’s vital sign and his distances. Experimental measurements of respiratory and heartbeat frequencies agree closely with reference data, showing a difference of approximately 3% in distance measurements. |
目次 Table of Contents |
論文審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 低中頻都卜勒雷達介紹 2 1-3 自我注入鎖定雷達介紹 4 1-4 章節規劃 7 第二章 系統架構與原理 8 2-1 技術原理 8 2-1-1 延遲與自我注入鎖定技術 8 2-1-2 鏡像訊號拒絕 12 2-1-3 雜波抵消機制 17 2-1-4 FSK測距方法 20 2-2 低中頻電路FPGA設計 22 2-2-1 數位式鏡像拒絕電路 22 2-2-2 數位式雜波抵消電路 23 2-3 系統實現 24 2-3-1 雷達系統 24 2-3-2 雷達系統硬體資源 27 第三章 感測實驗與結果 28 3-1移動金屬板偵測實驗 28 3-1-1鏡像訊號拒絕量測 28 3-1-2雜波抵消效果量測 30 3-1-3靈敏度量測 33 3-1-4等速移動下靈敏度量測 34 3-1-5距離量測 38 3-1-6金屬板量測總結 40 3-2人體感測實驗 40 3-2-1生理訊號量測 41 3-2-2距離量測 42 3-2-3人體感測總結 44 第四章 結論與未來展望 45 參考文獻 47 |
參考文獻 References |
[1] R. M. Page, “The early history of radar,” in Proc. IRE, vol. 50, no. 5, May 1962, pp. 1232-1236. [2] J. N. Entzminger, C. A. Fowler and W. J. Kenneally, “JointSTARS and GMTI: past, present and future,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 2, pp. 748-761, Apr. 1999. [3] D. S. Zrnic, J. F. Kimpel, D. E. Forsyth, A. Shapiro, G. Crain, R. Ferek, J. Heimmer, W. Benner, F T. J. McNellis, and R. J. Vogt. “Agile-beam phased array radar for weather observations,” Bull. Amer. Meteor. Soc., vol. 88, no. 11, pp. 1753-1766, Nov. 2007. [4] L. C. Graham, “Synthetic interferometer radar for topographic mapping,” in Proc. IEEE, vol. 62, no. 6, Jun. 1974, pp. 763-768. [5] M. Steinhauer, H. -O. Ruoss, H. Irion and W. Menzel, “Millimeter-wave-radar sensor based on a transceiver array for automotive applications,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 2, pp. 261-269, Feb. 2008. [6] W. Kang, S. Qian, Z. Sang and W. Wu, “Investigation of stepped-frequency hybrid modulation radar for respiration monitoring, 2-D Localization, and moving target tracking,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 7, pp. 3700-3712, Jul. 2022. [7] Central Weather Bureau [Online] Available: https://www.cwb.gov.tw/V8/C/W/ OBS_Radar.html [8] JAXA [Online] Available: https://www.satnavi.jaxa.jp/ja/project/alos/index.html [9] EETimes Taiwan [Online] Available: https://www.eettaiwan.com/20171026ta31-testing-automotive-radar-devices/ [10] Taronga Group [Online] Available: https://tarongagroup.com/news-insights/radar-based-vital-sign-sensor-saves-the-life-of-at-risk-inmate/ [11] D. Girbau, A. Lazaro, Á. Ramos and R. Villarino, “Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection,” IEEE Sensors J., vol. 12, no. 3, pp. 512-518, Mar. 2012. [12] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000. [13] M. Choi and S. Choi, “Performance analysis on the self-mixed interference cancellation in direct conversion receivers,” IEEE Trans. Consum. Electron., vol. 59, no. 2, pp. 310-315, May 2013. [14] J. Crols and M. S. J. Steyaert, “Low-IF topologies for high-performance analog front ends of fully integrated receivers,” IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process., vol. 45, no. 3, pp. 269-282, Mar. 1998 [15] B. Razavi, RF Microelectronics, 2nd ed. New York, NY, USA: Prentice hall, 2012, pp. 167-206. [16] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013. [17] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [18] C. Li et al., Principles and Applications of RF/microwave in Healthcare and Biosensing, 1st ed., Cambridge, MA, USA: Academic Press, 2016, pp. 247. [19] F.-K. Wang, P.-H. Juan, S.-C. Su, M.-C. Tang and T.-S. Horng, “Monitoring displacement by a quadrature self-injection-locked radar with measurement- and differential-based offset calibration methods,” IEEE Sensors J., vol. 19, no. 5, pp. 1905-1916, Mar. 2019. [20] K.-C. Peng, M.-C. Sung, F.-K. Wang and T.-S. Horng, “Noncontact vital sign sensing under nonperiodic body movement using a novel frequency-locked-loop radar,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4762-4773, Nov. 2021 [21] M.-C. Tang, C.-Y. Kuo, D.-C. Wun, F.-K. Wang and T.-S. Horng, “A self- and mutually injection-locked radar system for monitoring vital signs in real time with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4812-4822, Dec. 2016. [22] M.-C. Tang, F.-K. Wang and T.-S. Horng, “Single self-injection-locked radar with two antennas for monitoring vital signs with large body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 12, pp. 5324-5333, Dec. 2017. [23] 張家豪。「利用數位注入鎖定技術之低中頻都普勒雷達」。碩士論文,國立中山大學電機工程學系研究所,2022。 [24] S.-H. Yu and T.-S. Horng, “Highly linear phase-canceling self-injection-locked ultrasonic radar for non-contact monitoring of respiration and heartbeat,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 1, pp. 75-90, Feb. 2020. [25] R. Adler, “A study of locking phenomena in oscillators,” in Proc. IRE, vol. 34, no. 6, Jun. 1946, pp. 351-357. [26] L. J. Paciorek, “Injection locking of oscillators,” in Proc. IEEE, vol. 53, no. 11, Nov. 1965, pp. 1723-1727. [27] R. Hartley, “Modulation system,” U.S. Patent 1666206, Apr. 1928. [28] 鄧雅惠。「雙頻帶威福-哈特利鏡像消除接收機與超寬頻 LR-CR 正交相位降頻器」。碩士論文,國立交通大學電信工程學系,2008。 [29] M. C. Budge and M. P. Burt, “Range correlation effects in radars,” in Rec. 1993 IEEE Nat. Radar Conf., Lynnfield, MA, USA, 1993. [30] M. C. Budge and M. P. Burt, “Range correlation effects on phase and amplitude noise,” in Proc. Southeastcon '93, Charlotte, NC, USA, 1993. [31] M. Zakrzewski, H. Raittinen and J. Vanhala, “Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar,” IEEE Sensors J., vol. 12, no. 3, pp. 627-634, Mar. 2012. [32] C. Gu and J. Lien, “A Two-tone radar sensor for concurrent detection of absolute distance and relative movement for gesture sensing,” IEEE Sens. Lett., vol. 1, no. 3, pp. 1-4, Jun. 2017. [33] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931-2940, Dec. 2015. [34] Vernier. [Online] Available: https://www.vernier.com/product/go-direct-respiration-belt/ [35] Polar. [Online] Available: https://polar.com/tw-zh/products/accessories/H10_heart_rate_sensor |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2033-08-10 校外 Off-campus:開放下載的時間 available 2033-08-10 您的 IP(校外) 位址是 3.139.87.113 現在時間是 2024-11-22 論文校外開放下載的時間是 2033-08-10 Your IP address is 3.139.87.113 The current date is 2024-11-22 This thesis will be available to you on 2033-08-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-08-10 |
QR Code |