論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2033-08-10
校外 Off-campus:開放下載的時間 available 2033-08-10
論文名稱 Title |
具有雜波抑制與三維定位能力之合成孔徑自我注入鎖定生醫雷達 Synthetic Aperture Self-Injection-Locked Radar with Clutter Suppression and 3-D Positioning Capabilities for Biomedical Application |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
81 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-01 |
繳交日期 Date of Submission |
2023-08-10 |
關鍵字 Keywords |
自我注入鎖定雷達、合成孔徑雷達、干涉合成孔徑雷達、生理感測、生理成像、三維定位 Self-Injection-Locked (SIL) radar, Synthetic Aperture Radar (SAR), Interferometric synthetic aperture radar (InSAR), Vital sign sensing, Vital sign imaging, 3D postioning |
||
統計 Statistics |
本論文已被瀏覽 144 次,被下載 0 次 The thesis/dissertation has been browsed 144 times, has been downloaded 0 times. |
中文摘要 |
本文基於自我注入鎖定(Self-Injection Locking, SIL)技術運用於合成孔徑雷達(Synthetic Aperture Radar),將SIL雷達架設於等速移動平台,達到SAR的量測效果,並利用距離都卜勒演算法提供二維成像與目標物定位。透過SIL雷達高靈敏度的特性,檢測雷達慢時間相位下所包含的目標都卜勒訊息。本文利用目標的都卜勒訊息搭配合成孔徑雷達的二維成像資訊,能提取出具生理徵象的目標,並移除不具生理徵象的靜態物體來達到生理成像的效果。本文根據人數與環境的不同分別進行了單及多人體的生理定位與成像,並透過在目標與雷達間擺置木牆來證明本文所使用的系統具有穿牆生理成像的能力。 本文也將SIL雷達運用於干涉合成孔徑雷達(InSAR)之上,利用兩軌道間彼此的慢時間相位差搭配兩軌道間的高度差,進行目標與雷達間的相對高度換算,透過已知的雷達軌道高度即可還原目標的真實高度。透過二維成像所提供的定位資訊與InSAR所提供的高度資訊,以實現多目標的三維定位。 |
Abstract |
This thesis presents a Synthetic Aperture Radar (SAR) based on self-injection-locking (SIL) technology. The SIL radar was mounted on a constant-speed platform to perform SAR measurements. Then, the 2D imaging and target location are obtained using range Doppler algorithm (RDA). Moreover, the Doppler information of the targets can be extracted from the slow-time phase measured by the high-sensitivity SIL radar. This study preserves the images of moving targets but removes those of static objects in the SAR measurements by using the targets’ Doppler information. This study not only conducts experiments to provide the positions and images of the single or multiple targets under different indoor conditions, but also demonstrates the through-wall imaging by placing a wood wall between the targets and radar. This system also operates as an Interferometric synthetic aperture radar (InSAR). The height between the targets and radar can be calculated in terms of the slow-time phase difference between two radar trajectories, and the actual height of the targets can be estimated from adding the height of the radar. This thesis finally demonstrates the capability of 3D positioning and using the information provided from InSAR and 2D SAR measurements. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 序論 1 1.1 研究背景與動機 1 1.2 調頻連續波雷達簡介 2 1.3 合成孔徑雷達(SAR) 4 1.4 干涉式合成孔徑雷達(InSAR) 6 1.5 自我注入鎖定雷達 8 1.6 章節規劃 9 第二章 系統整合與實現 10 2.1 系統架構 10 2.2 SAR演算法 13 2.3 移除靜態物體方法與流程 21 2.4 InSAR演算法 26 第三章 SAR成像實驗結果與分析 28 3.1 單目標位置辨識 28 3.1.1 大金屬板與待測物相距2個range bin 30 3.1.2 無雜波環境下單人位置辨識 30 3.1.3 有雜波環境下單人位置辨識 32 3.2 靈敏度測試 35 3.2.1 致動器 35 3.2.2 不同人體姿態 37 3.3 雜波環境下多目標辨識 41 3.3.1 多目標辨識 41 3.3.2 多人辨識 45 3.4.1 木牆與待測物相距2個range bin 47 3.4.2 木牆與待測物相距1個range bin 49 3.4.3 人體穿牆實驗 50 3.4.4 多目標穿牆定位 52 4.1雷達最佳感測範圍 55 4.2 單目標三維定位 58 4.3 多目標三維定位 60 4.4 誤差探討 62 第五章 結論與未來展望 64 參考文獻 66 |
參考文獻 References |
[1] 呼吸監控胸袋-長恩科技 [Online]. Available: https://www.laboratory.com.tw/product5dd4ebc5b26dd.htm [2] 科研防疫新利器──高靈敏無線生理偵測,減低交互傳染風險 [Online]. Available: https://technews.tw/2020/04/01/most-non-contact-physiological-monitoring-products/ [3] 無人機和光學雷達,會是一對完美組合嗎? [Online]. Available: https://www.techbang.com/posts/62823-will-drones-and-optical-radars-be-a-good-pair-of-cp [4] 022快艇在衛星雷達下「無所遁形」?專家:不對 [Online]. Available: https://www.chinatimes.com/realtimenews/20210930004574-260417?chdtv [5] Caner Ö zdemii̇r, Inverse Synthetic Aperture Radar imaging with MATLAB algorithms, Hoboken, NJ, USA: Wiley, 2012. [6] 調頻連續波雷達-中文百科 [Online]. Available: https://www.newton.com.tw/wiki/%E8%AA%BF%E9%A0%BB%E9%80%A3%E7%BA%8C%E6%B3%A2%E9%9B%B7%E9%81%94 [7] Frequency-Modulated Continuous-Wave Radar (FMCW Radar) [Online]. Available: https://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar.en.html [8] J.-W. Ting, D. Oloumi, and K. Rambabu, “FMCW SAR system for near distance imaging applications—Practical considerations and calibrations,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 450–461,Jan. 2018. [9] C. Li, T.-S.J. Horng, Mohammad-Reza Tofighi, Dominique Schreurs, Principles and applications of RF/Microwave in healthcare and biosensing, Cambridge, MA, USA: Academic Press, 2016. [10] Donald R. Wehner, High-Resolution Radar, 2nd ed. Norwood MA, USA: Artech House, 1994. [11] Cruz, Helena, Mário Véstias, José Monteiro, Horácio Neto, and Rui Policarpo Duarte. 2022. "A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective" Remote Sensing 14, no. 5: 1258 [12] S. Guo and X. Dong, “Modified Omega-K algorithm for ground-based FMCW SAR imaging,” 2016 IEEE 13th Int. Conf. Sig. Process. (ICSP), in Chengdu, China, 2016. [13] G. Cumming, Y. L. Neo and F. H. Wong, “Interpretations of the omega-K algorithm and comparisons with other algorithms,” IGARSS 2003. 2003 IEEE Int. Geosci. Remote Sens. Symp. Proc. (IEEE Cat. No.03CH37477), in Toulouse, France, 2003, pp. 1455-1458. [14] H. Li, Z. Suo, C. Zheng, Z. Li, and Q. Zhang, “Improved backprojection algorithm on small time bandwidth product SAR imaging,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022. [15] RADARSAT-1 tracking path over Canada, Sep. 28, 2005. [Online]. Available: https://www.asc-csa.gc.ca/eng/multimedia/search/image/watch/447 [16] Space Radar Image of Wadi Kufra, Libya, Oct. 4, 1994. [Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/s/sir-c [17] InSAR Technology [Online]. Available: http://insar.space/insar-technology/ [18] Interferometric Synthetic Aperture Radar [Online]. Available: https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/geodetic-techniques/interferometric-synthetic-aperture-radar [19] 盧玉芳。「以雷達干涉技術監測雲林地層下陷」。碩士論文,國立交通大學土木工程系所,2007 [20] 張中白、王皓正、陳錕山, “地震地質調查及活動斷層資料庫建置計畫—地殼變形研究計畫。經濟部中央地質調查所報告第92-10號”,2003 [21] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010. [22] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131-2139, Aug. 2011. [23] Synthetic-aperture radar imaging-Henrik’s Blog [Online]. Available: https://hforsten.com/synthetic-aperture-radar-imaging.html [24] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar”, IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931-2940, Dec. 2015. [25] J. Yan, Z. Peng, H. Hong, H. Chu, X. Zhu and C. Li, “Vital-SAR-imaging with a drone-based hybrid radar system,” IEEE Trans. Microw. Theory Tech, vol. 66, no. 12, pp. 5852-5862, Dec. 2018. [26] J.Yan et al., “The development of vital-SAR-imaging with an FMCW radar system,” Proc. IEEE MTT-S Int. Microw. Biomed. Conf., in Nanjing, China, 2019, pp. 1-4. [27] J. Yan, G. Zhang, H. Hong, H. Chu, C. Li and X. Zhu, “Phase-based human target 2-D identification with a mobile FMCW radar platform,” IEEE Trans. Microw Theory Tech, vol. 67, no. 12, pp. 5348-5359, Dec. 2019. [28] SAR成像系列:【11】干涉合成孔徑雷達(干涉SAR,Interferometric SAR,InSAR)[Online]. Available: https://blog.csdn.net/zr2006_7/article/details/126725377 [29] InSAR學習(一) 基本原理 Basics of Interferometric SAR (InSAR) [Online]. Available: https://blog.csdn.net/qiupingzhao/article/details/50999609 [30] J. Burki, T. Ali and S. Arshad, “Vector network analyzer (VNA) based synthetic aperture radar (SAR) imaging,” INMIC, in Lahore, Pakistan, 2013, pp. 207-212. [31] A. Gromek, “High resolution SAR imaging trials using a handheld vector network analyzer,” Int. Radar Symp. (IRS), in Gdansk, Poland, 2014, pp. 1-4. [32] A. Batra et al., “Experimental analysis of high resolution indoor THz SAR imaging,” WSA 2020; 24th Int. ITG Workshop on Smart Antennas, in Hamburg, Germany, 2020, pp. 1-5. [33] A. Batra et al., “Short-range SAR imaging from GHz to THz waves,” IEEE Microw. J., vol. 1, no. 2, pp. 574-585, Apr. 2021. [34] Y. Yuan, C. Lu, A. Y.-K. Chen, C.-H. Tseng, and C.-T. M. Wu, “Multi-target concurrent vital sign and location detection using metamaterial-integrated self-injection-locked quadrature radar sensor,” IEEE Trans. Microw Theory Tech, vol. 67, no. 12, pp. 5429-5437, Dec. 2019. [35] C. Lu, Y. Yuan, C. -H. Tseng and C. -T. Michael Wu, “Multi-target continuous-wave vital sign radar using 24 GHz metamaterial leaky wave antennas,” Proc. IEEE MTT-S Int. Microw. Biomed. Conf. , in Nanjing, China, 2019, pp. 1-4. [36] Z. Wu, L. Zhang and H. Liu, “Generalized three-dimensional imaging algorithms for synthetic aperture radar with metamaterial apertures-based antenna,” IEEE Access, vol. 7, pp. 59716-59727, 2019. [37] M. Mercuri et al., “2-D localization, angular separation and vital signs monitoring using a SISO FMCW radar for smart long-term health monitoring environments,” IEEE Internet Things J., vol. 8, no. 14, pp. 11065–11077, Jul. 2021. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2033-08-10 校外 Off-campus:開放下載的時間 available 2033-08-10 您的 IP(校外) 位址是 13.59.92.247 現在時間是 2024-11-22 論文校外開放下載的時間是 2033-08-10 Your IP address is 13.59.92.247 The current date is 2024-11-22 This thesis will be available to you on 2033-08-10. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2028-08-10 |
QR Code |