Responsive image
博碩士論文 etd-0710123-163407 詳細資訊
Title page for etd-0710123-163407
論文名稱
Title
用於多人定位與生理監測之Wi-Fi被動式雷達
Wi-Fi-based Passive Radar for Localizing Multiple People and Monitoring Their Vital Signs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-08-01
繳交日期
Date of Submission
2023-08-10
關鍵字
Keywords
都卜勒雷達、生理監測、Wi-Fi雷達、FSK測距、多目標感測
Doppler Radar, Vital sign sensing, Wi-Fi Radar, Frequency-Shift-Keying (FSK) ranging, Multi-Target sensing
統計
Statistics
本論文已被瀏覽 153 次,被下載 0
The thesis/dissertation has been browsed 153 times, has been downloaded 0 times.
中文摘要
本論文是採用Wi-Fi訊號作為都卜勒雷達系統的發射訊號源,並結合IQ正交解調的接收機架構,進行同時人體生理監測與測距的實驗。由於Wi-Fi訊號含有振幅調制(AM Modulation)以及相位調制(PM Modulation)成分,導致系統的感測性能下降,為了改善雷達性能,經由本實驗室提出的注入鎖定技術以及雙通道雜訊抵銷法來抑制Wi-Fi訊號的振幅和相位調制,使都卜勒訊號品質提升,進而量測到呼吸及心跳訊號。
為了使Wi-Fi雷達能夠測距,本論文利用頻移鍵控(FSK)的測距觀念提出藉由RF開關切換兩不同載波頻率的Wi-Fi訊號搭配校正電路延遲的方法,得到正確的相位差再利用數位訊號處理的方式,將相位差轉換為距離資訊。接著為了實現多人同時生理訊號監測與測距,使用1T6R一維數位波束成型架構,並利用雙通道雜訊抵銷法來抵銷Wi-Fi調制以及搭配FSK測距技術,不僅可以清楚分辨各目標所在的方位角還能監測到個別目標的呼吸、心跳以及距離資訊。
Abstract
The aim of this study is to develop a passive Doppler radar based on an injection-locked quadrature receiver architecture. The system uses a Wi-Fi access point module as a transmission signal source to detect human vital signs and their distances simultaneously. Due to the presence of amplitude modulation (AM) and phase modulation (PM) components in Wi-Fi signals, the sensing performance of the system is degraded. To improve radar performance, the injection locking technique and dual-channel noise cancellation method proposed by our laboratory are employed to suppress both amplitude and phase modulations, thereby enhancing the quality of Doppler signals and enabling the measurement of respiratory and heartbeat signals.
In order to enable distance measurement with Wi-Fi radar, this study introduces a method based on the concept of frequency-shift keying (FSK) to switch between two different carrier frequencies of Wi-Fi signals using RF switches with compensation for circuit delays. By obtaining the correct phase difference and utilizing digital processing techniques, the phase difference can be converted into distance information accurately. Furthermore, to achieve simultaneous measurements of multiple individuals' vital signs and distances, a 1T6R one-dimensional digital beamforming architecture is utilized. The dual-channel noise cancellation method is employed to suppress Wi-Fi modulation noises, and in conjunction with FSK ranging technology, it allows for angular differentiation between various targets, as well as the simultaneous monitoring of their respiration, heartbeat, and distance information.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 序論 1
1.1 研究背景與動機 1
1.2 雷達簡介與應用 2
1.2.1 主動雷達 2
1.2.2 通訊通道感測技術 5
1.2.3 被動雷達 6
1.2.4 注入鎖定式被動雷達(ILQR) 7
1.3 波束成型簡介 8
1.4 章節規劃 9
第二章 生理監測與定位之Wi-Fi感測技術 11
2.1 前言 11
2.2注入牽引抵銷技術 11
2.2.1 初代注入鎖定被動雷達 11
2.2.2注入牽引抵銷機制 14
2.3直流準位偏移校正(DC-Offsets Removal) 16
2.3.1內部電路不完美貢獻之直流準位偏移 16
2.3.2外部因素貢獻之直流準位偏移 17
2.4 頻移鍵控(FSK)技術 20
2.4.1 前言 20
2.4.2 距離追蹤理論 21
2.4.3 電路系統延遲 23
2.5 數位波束成型技術(Digital Beamforming) 24
2.6 系統實現 27
2.6.1測距雷達實驗 28
2.6.2 多人定位與生理監測實驗 30
第三章 感測實驗與結果討論 33
3.1 擺動金屬板偵測實驗 33
3.1.1 測距實驗 33
3.1.2 靈敏度實驗 39
3.1.3 抗干擾實驗 40
3.2 多人定位與生理監測實驗 46
3.2.1 陣列天線設計 46
3.2.2 實驗結果 48
第四章 結論 55
參考文獻 56

參考文獻 References
[1] L. D. Xu, W. He, and S. Li, “Internet of Things in industries: A survey,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.
[2] Batool, Sidra, Fabrizio Frezza, Fabio Mangini, and Patrizio Simeoni. 2020. “Introduction to radar scattering application in eemote sensing and diagnostics: Review” Atmosphere 11, no. 5: 517.
[3] 黃泓偉。「24GHz頻率調變連續波雷達系統之前端電路設計與整合」。碩士論文,國立交通大學電機學院通訊與網路科技產業專班,2007。
[4] CW Radar-Electronics Club [online].Available:
https://electronics-club.com/continuous-wave-cw-radar/#Disadvantages_of_CW_Doppler_Radar
[5] Z. Duan and J. Liang, “Non-contact detection of vital signs using a UWB radar sensor,” IEEE Access, vol. 7, pp. 36888–36895, 2019.
[6] UWB-RF Wireless World [online].Available:
https://www.rfwireless-world.com/Terminology/Advantages-and-disadvantages-of-UWB.html
[7] B. Möhring, U. Siart, S. Schweizer and T. F. Eibert, “Transmission line based frequency modulated continuous wave radar for monitoring airbag deployment processes,” 2021 18th European Radar Conf. (EuRAD), in London, United Kingdom, 2022, pp. 481-484
[8] FMCW-RF Wireless World [online].Available:
https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-FMCW-Radar.html
[9] Y. Ge et al., “Contactless WiFi sensing and monitoring for future healthcare–emerging trends, challenges, and opportunities,” IEEE Rev. Biomed. Eng., vol. 16, pp. 171–191, 2023.
[10] F. Zhang, C. Wu, B. Wang, and K. J. R. Liu, “mmEye: Super-resolution millimeter wave imaging,” IEEE Internet Things J., vol. 8, no. 8, pp. 6995–7008, Apr. 2021.
[11] Bluetooth [online].Available:
https://en.wikipedia.org/wiki/Bluetooth
[12] 5G [online].Available:
https://zh.wikipedia.org/zh-tw/5G
[13] Wi-Fi [online].Available:
https://zh.wikipedia.org/zh-tw/Wi-Fi
[14] Oikonomou, D., Nomikos, P., Limnaios, G., et al.: “Passive radars and their use in the modern battlefield”, J. Comput. Model., 2019, 9, (2), pp. 37–61
[15] D. Tang, V. G. R. Varela, D. V. Q. Rodrigues, D. Rodriguez, and C. Li, “A Wi-Fi frequency band passive biomedical Doppler radar sensor,” IEEE Trans. Microw. Theory Techn., early access, Aug., 2022.
[16] Passive Radar [online].Available:
https://en.wikipedia.org/wiki/Passive_radar
[17] F.-K. Wang, M.-C. Tang, Y.-C. Chiu, and T.-S. Horng, “Gesture sensing using retransmitted wireless communication signals based on Doppler radar technology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4592–4602, Dec. 2015.
[18] “Beamforming,” wiki. [Online]. Available:
Available: https://en.wikipedia.org/wiki/Beamforming
[19] 黃昱齊。「2.4 GHz數位波束成型都卜勒雷達之實現與生理監測應用」。碩士論文,國立中山大學電機工程學系研究所,2019。
[20] 林睿彥。「Wi-Fi為基礎之人體成像與生理監測」。碩士論文,國立中山大學電機工程學系研究所,2020。
[21] 陳政泰。「基於 Wi-Fi 之被動式雷達用於生理監測與定位」。碩士論文,國立中山大學電機工程學系研究所,2022。
[22] Y. Zhang, M. Amin, and F. Ahmad, “A novel approach for multiple moving target localization using dual-frequency radars and time-frequency distributions,” in Proc. 41st Asilomar Conf. Signals, Syst. Comput., Nov. 2007, pp. 1817–1821.
[23] J. Wang, T. Karp, J.-M. Munoz-Ferreras, R. Gomez-Garcia, and C. Li, “A spectrum-efficient FSK radar technology for range tracking of both moving and stationary human subjects,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5406–5416, Dec. 2019.
[24] J. Wang, D. Rodriguez, A. Mishra, P. R. Nallabolu, T. Karp, and C. Li, “24-GHz impedance-modulated BPSK tags for range tracking and vital signs sensing of multiple targets using an FSK radar,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1817–1828, Mar. 2021.
[25] Y. Zhang, M. Amin, and F. Ahmad, “Time–frequency analysis for the localization of multiple moving targets using dual-frequency radars,” IEEE Signal Process. Lett., vol. 15, pp. 777–780, 2008.
[26] J. Xiong, H. Hong, H. Zhang, N. Wang, H. Chu, and X. Zhu, “Multitarget respiration detection with adaptive digital beamforming technique based on SIMO radar,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4814–4824, Sep. 16, 2020.
[27] M. Longbrake, “True time-delay beamsteering for radar,” in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON), Dayton, OH, USA, Jul. 2012, pp. 246–249.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2033-08-10
校外 Off-campus:開放下載的時間 available 2033-08-10

您的 IP(校外) 位址是 3.145.8.139
現在時間是 2024-11-22
論文校外開放下載的時間是 2033-08-10

Your IP address is 3.145.8.139
The current date is 2024-11-22
This thesis will be available to you on 2033-08-10.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2028-08-10

QR Code