Responsive image
博碩士論文 etd-0711123-151008 詳細資訊
Title page for etd-0711123-151008
論文名稱
Title
應用於自我注入鎖定雷達之生理徵象感測演算法
Algorithm for Vital Sign Monitoring with Self-Injection-Locked Radars
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2023-08-02
繳交日期
Date of Submission
2023-08-11
關鍵字
Keywords
非接觸式生命體徵檢測、頻率解析度不足、快速傅立葉轉換、短窗口、時域扣除、配對性問題
non-contact physiological sensing, insufficient spectral resolution, Fast Fourier Transform, short-window, time-domain subtraction, matching issues
統計
Statistics
本論文已被瀏覽 179 次,被下載 0
The thesis/dissertation has been browsed 179 times, has been downloaded 0 times.
中文摘要
使用都卜勒雷達系統進行非接觸式生命體徵檢測,以往研究大多使用長週期時間窗口來保證頻譜上使用峰值搜索方法能夠準確估計生理訊號,當使用小於5秒的時間窗口時,會有頻譜解析度不足的問題,使準確度顯著下降。因此為了解決解析度的問題,本論文提出了一套訊號處理流程,首先以快速傅立葉轉換的方法對短窗口原始訊號進行振幅、頻率的估計,接著透過縮小估計範圍並將短窗口原始訊號不斷對估計訊號做時域扣除,直至殘餘能量滿足所設定之閥值。結果顯示無論是在雜訊存在或頻率非常接近的情況下,皆能夠成功解析出接近參考訊號的結果,展現出良好的性能。在實際的感測實驗中,請兩位受測者坐於雷達前以非常接近之頻率進行短時間的都卜勒運動,同樣能成功分離出接近實際數值的結果。從結果上顯示出本論文所提出的訊號處理方法計算出來的頻率誤差大約都能維持在5%以下,準確度皆有著不錯的表現。然而,這個算法仍然存在著配對性問題,可能無法準確地將解析出的結果與原始訊號進行配對。此外,運算時間會隨著感測都卜勒數量的提高而隨之增加,這些問題需要在使用算法時進行考慮和解決,以確保算法在實際應用中的效能和效率。
Abstract
Using Doppler radar systems for non-contact physiological sensing, previous studies have mostly utilized long-period time windows to ensure accurate estimation of physiological signals using peak search methods on the spectrum. However, when using time windows shorter than 5 seconds, there is an issue with insufficient spectral resolution, leading to a significant decrease in accuracy. To address the resolution problem, this paper proposes a signal processing procedure. First, the short-window raw signal is processed using fast Fourier transform to estimate amplitude and frequency. Then, by iteratively subtracting the estimated signal from the short-window raw signal within a narrowed estimation range and continuing until the residual energy meets the set threshold. Results demonstrate that whether in the presence of noise or situations with very close frequencies, the proposed method successfully resolves results close to reference signals, showcasing good performance.In practical sensing experiments, two subjects were seated in front of the radar, performing short-duration Doppler movements at very close frequencies. The method was able to successfully separate results close to actual values. Results show that the frequency error calculated using the signal processing approach proposed in this paper is approximately maintained below 5%, with consistent accuracy. However, the algorithm still faces matching issues and may not accurately match the resolved results with the original signal. Additionally, computation time increases with the number of sensed Doppler frequencies, requiring consideration and resolution when using the algorithm to ensure its effectiveness and efficiency in real-world applications.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章序論 1
1.1研究背景與動機 1
1.2雷達演進及系統介紹 2
1.2.1連續波雷達 4
1.2.2自我注入鎖定雷達 5
1.3演算法回顧 7
1.3.1餘弦轉換 8
1.3.2頻率估計演算法 10
第二章演算法文獻回顧及模擬 12
2.1基礎訊號處理概論 12
2.2頻率估計演算法與快速傅立葉比較 15
2.2.1窗長度分析 19
第三章演算法介紹與驗證 22
3.1演算法介紹 22
3.2兩都卜勒頻率分離驗證 25
3.2.1可分離頻率極限 27
3.2.2可分離雜訊極限 30
3.2.3初始相位問題 32
3.2.4單一都卜勒頻率分離驗證 35
3.2.5蒙地卡羅方法 37
第四章系統架構與感測實驗 40
4.1相位正交自我注入鎖定雷達 40
4.1.1 直流校正與生理訊號提取 42
4.2 雷達系統設置 43
4.3 致動器感測實驗 44
4.4 人體感測實驗 51
第五章 結論 56
參考文獻 57
參考文獻 References
[1] Wikipedia. [Online]. Available: https://zh.wikipedia.org/zh-tw/%E8%A1%80%E5%8E%8B%E8%AE%A1.
[2] Phenix Care international [Online]. Available: https://shop.phenix-care.com/tw/oxymetre/36--ce--4717095035218.html.
[3] 宇心生醫股份有限公司. “QT-ECG” [Online]. Available: https://innoaward.taiwanhealthcare.org/award_detail.php?REFDOCTYPID=0mge3fd45atiufhy&NumID=0p1lkqe5yad8z446&REFDOCID=0p20apima7of8an7.
[4] 星宇儀器有限公司“Go Direct呼吸監控胸帶” [Online]. Available: https://www.hy6688.com.tw/product-detail-2976954.html.
[5] I. Sadek, T. T. S. Heng, E. Seet, and B. Abdulrazak, “A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparsion Study,”J. Med. Internet Res., vol. 22,no. 9,p. e18297,2020.
[6] E. M. Nowara et al., “Sparseppg: Towards driver monitoring using camera-based vital signs estimation in near-infrared,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018, pp. 1353–135309.
[7] C. Li et al., “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1692–1706, May 2017.
[8] Yole, “Reports radar for automotive is entering a new age,” Sep. 21, 2018. [Online]. Available: http://www.microwavejournal.com/articles/31079-yole-reports-radar-for-automotive-is-entering-a-new-age
[9] H. Wang, “都卜勒效應簡介,” Dec. 25, 2001. [Online].Available: http://www.phy.ntnu.edu.tw/oldjava/Doppler/index.html
[10] F.-K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[11] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems, ” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007.
[12] G. Wang, C. Gu, T. Inoue, and C. Li, “A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2812–2822, Nov. 2014.
[13] P.-H. Juan, C.-Y. Chueh, F.-K. Wang, “Vital Signs Detection With Difference Beamforming and Orthogonal Projection Filter Based on SIMO-FMCW Radar,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 1, pp. 83-92, June. 2022.
[14] W.-C. Su, P.-H. Juan, D.-M. Chian, T.-S.-J. Horng, C.-K. Wen, and F.-K. Wang, “2-D self-injection-locked Doppler radar for locating multiple people and monitoring their vital signs,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 1016–1026, Jan. 2021.
[15] Y. Yuan, C. Lu, A. Y.-K. Chen, C.-H. Tseng, and C.-T.-M. Wu, “Noncontact multi-target vital sign detection using self-injection-locked radar sensor based on metamaterial leaky wave antenna,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2019, pp. 148–151.
[16] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011.
[17] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng and P. Hsu, “Phase- and self-injection-locked radar for detecting vital signs with efficient elimination of DC offsets and null points, ” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685-695, Jan. 2013.
[18] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator, ”in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
[19] J. Xiong, H. Hong, H. Zhang, N. Wang, H. Chu, and X. Zhu, “Multitarget respiration detection with adaptive digital beamforming technique based on SIMO radar,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4814–4824, Nov. 2020.
[20] Y. Ma et al., “Multitarget time-varying vocal folds vibration detection using MIMO FMCW radar,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.
[21] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, ” in Proc. Roy. Soc. London A Math. Phys. Eng. Sci., vol. 454, no. 1971, Mar 1998, pp. 903-995.
[22] J. Gilles, “Empirical wavelet transform,” IEEE Trans. Signal Process., vol. 61, no. 16, pp. 3999–4010, Aug. 2013.
[23] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted data analysis method, ” Adv. Adapt. Data Anal., vol. 1, no. 1, pp. 1-41, Jan. 2009.
[24] J. Yan, G. Zhang, H. Hong, H. Chu, C. Li, and X. Zhu, ‘‘Phase-based human target 2-D identification with a mobile FMCW radar platform,’’ IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5348–5359, Dec. 2019.
[25] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ, USA: Pearson, 2010.
[26] J. Park et al., “Polyphase-basis discrete cosine transform for real-time measurement of heart rate with CW Doppler radar,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1644-1659, Mar. 2018.
[27] J.-Y. Shih, F.-K. Wang, “Quadrature Cosine Transform (QCT) With Varying Window Length (VWL) Technique for Noncontact Vital Sign Monitoring Using a Continuous-Wave (CW) Radar,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 3, pp. 1639-1650, Mar. 2022.
[28] F.-K. Wang, P.-H. Juan, D.-M. Chian, and C.-K. Wen, “Multiple range and vital sign detection based on single-conversion self-injection-locked hybrid mode radar with a novel frequency estimation algorithm,” IEEE Trans. Microw. Theory Techn, vol. 68, no. 5, pp. 1908–1920, 2020.
[29] M. Zakrzewski, H. Raittinen, and J. Vanhala, “Comparison of center estimation algorithms for heart and respiration monitoring with microwave Doppler radar,” IEEE Sensors J., vol. 12, no. 3, pp. 627–634, Mar. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-11
校外 Off-campus:開放下載的時間 available 2026-08-11

您的 IP(校外) 位址是 3.15.145.231
現在時間是 2025-04-03
論文校外開放下載的時間是 2026-08-11

Your IP address is 3.15.145.231
The current date is 2025-04-03
This thesis will be available to you on 2026-08-11.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2026-08-11

QR Code