論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available
論文名稱 Title |
功率放大器之記憶效應分析與功率結合設計 Memory Effect Analysis and Power Combining Design of Power Amplifiers |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
107 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2010-06-28 |
繳交日期 Date of Submission |
2010-07-12 |
關鍵字 Keywords |
記憶效應、功率結合、功率放大器 Memory Effect, Power Combining, Power Amplifier |
||
統計 Statistics |
本論文已被瀏覽 5780 次,被下載 0 次 The thesis/dissertation has been browsed 5780 times, has been downloaded 0 times. |
中文摘要 |
本論文主要分為兩部分。第一部分以0.15 μm pHEMT製程設計一AB類功率放大器,利用Volterra series建立可分析記憶效應之非線性模型。在輸入不同頻率間距之連續波雙音訊號時,討論其交互調變項IM3H與IM3L在相位上由於記憶效應所造成的變化。同時提出以數位儲存示波器量測三階交互調變響應的方法,並能與模型分析結果相互驗證。第二部分在研究CMOS功率結合技術,首先比較串聯與並聯結合轉換器架構與優點。接著以0.18 μm CMOS製程設計採用一對並聯結合轉換器做為功率結合用途之E類功率放大器,模擬與實驗結果均顯示其具有高功\\率增加效率。 |
Abstract |
This thesis consists of two parts. Part one presents a design of class-AB power amplifier in 0.15μm pHEMT process, and establishes a nonlinear model with memory effects for the power amplifier using Volterra series. To observe the memory effects, two-tone continuous wave signals have been applied to the model to predict the phase variation between IM3H and IM3L as a function of tone spacing. In the meanwhile, a time-domain measurement technique for the third-order intermodulation responses using a digital storage oscilloscope has been developed to verify the modeled predictions on IM3H and IM3L. Comparison between modeled and measured results shows good agreement. Part two of this thesis is to study the CMOS power-combining techniques. At first, the pros and cons between series and parallel combining transformers are discussed. Then, a design of class-E power amplifier using a pair of parallel combining transformers for power combining is presented. Both simulated and measured results show that the presented Class-E power amplifier has a high power-added efficiency. |
目次 Table of Contents |
目錄 I 圖表目錄 III 第一章 緒論 1 1.1 背景簡介 1 1.2 章節規劃 3 第二章 功率放大器非線性特性與記憶效應 4 2.1 非線性特性 4 2.1.1 增益壓縮 4 2.1.2 交互調變失真 5 2.1.3 三階交越點 7 2.1.4 多音交互調變比例 8 2.1.5 鄰近通道功率比例 9 2.1.6 Power series理論 9 2.2 記憶效應 13 2.2.1 電熱記憶效應 14 2.2.2 電路記憶效應 16 2.2.3 Volterra series理論 18 第三章 功率放大器非線性模型與電路記憶效應分析 24 3.1 非線性模型 24 3.1.1 AB類功率放大器架構 24 3.1.2 小訊號參數TRL校正量測 26 3.1.3 小訊號等效模型 29 3.1.4 非線性電流源與電容分析 37 3.1.5 Volterra series數學分析 40 3.2 電路記憶效應分析 44 3.2.1 數學模型模擬分析 44 3.2.2 IM3相位量測實驗 49 3.2.3 模擬與量測結果 52 第四章 功率放大器功\\率結合技術研究 59 4.1 串聯與並聯結合轉換器 60 4.2 CMOS功率結合式功\\率放大器設計 65 4.2.1 E類功率放大器架構 66 4.2.2 功率結合架構 69 4.2.3 模擬與量測結果 71 第五章 結論 79 參考文獻 81 附錄A 86 附錄B 88 |
參考文獻 References |
[1]P. B. Kenington, High-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000. [2]S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999. [3]B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback, ” in IEEE 49th Vehicular Technology Conf., vol. 2, pp. 1520-1524, 1999. [4]M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques, ” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998. [5]J. K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer, ”IEEE Trans. Veh. Technol., vol. 44, pp.31-40, Feb. 1996. [6]Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation, ” Microwave J., vol. 46, pp. 22-44, April 2003. [7]G. Hau, T. Nishimura, and N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions, ” IEEE Trans. Microw. Theory and Tech., vol. 49, pp. 1194-1201, June 2001. [8]K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison, ” IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000. [9]J. Vuolevi and T. Rahkonen, Distortion in RF Power Amplifiers, Norwood, MA: Artech House, 2003. [10]P. Draxler and I. Langmore, “Time domain characterization of power amplifiers with memory effects, ” IEEE MTT-S Int. Mircow. Symp. Dig., vol.2, pp. 803-806, 2003. [11]H. Ku and M. D. Kenney, “Quantifying memory effects in RF power amplifiers, ” IEEE Trans. Microw. Theory and Tech., vol. 50, pp. 2843-2849, Dec. 2003. [12]J. Vuolevi and T. Rahkonen, “Measurement technique for characterizing memory effects in RF power amplifiers, ” in IEEE Trans. Microw. Theory and Tech., vol. 49, pp. 1383-1389, Aug. 2001. [13]J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory, ” Electron. Lett., vol. 37, no. 23, pp. 1417-1418, Nov. 2001. [14]D. M. Pozar, Microwave and RF Wireless Systems, Norwood, MA: John Wiley & Sons, Inc., 2001. [15]I. Angelov, H. Zirath, and N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices, ” IEEE Trans. Microw. Theory and Tech., vol. 40, pp. 2258-2266, Dec. 1992. [16]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model, ” IEEE Trans. Microw. Theory and Tech., vol. 44, pp. 1664-1674, Oct. 1996. [17]H. Ku and J. S. Kenney, “Behavioral modeling of nonlinear RF power amplifiers considering memory effects, ” IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 2495–2504, Dec. 2003. [18]C. Crespo-Cadenas, J. Reina-Tosina, and M. J. Madero-Ayora, “Volterra series approach to behavioral modeling: Application to an FET amplifier, ” in IEEE Asia–Pacific Microw. Conf., Yokohama, Japan, vol. 1, pp. 445-448, Dec. 2006. [19]C. Crespo-Cadenas, J. Reina-Tosina, and M. J. Madero-Ayora, “A new approach to pruning Volterra models for power amplifiers, ” IEEE Trans. on Signal Processing, vol. 58, no. 4, pp. 2113-2120, April 2010. [20]K. Y. Chen and C. C. Huang, “Characterisation of GaAs pseudomorphic high electron mobility transistors for Volterra-series circuit analysis, ” IET Microw. Ant. Prop., vol. 3, iss. 2, pp. 228-234, May 2009. [21]游紹瑋,藉沃特拉級數方法分析砷化銦鎵假晶式高電子遷移率電晶體非線性特性,國立中山大學電機工程學系研究所碩士論文,2009. [22]J. Vuolevi, J. Manninen, and T. Rahkonen, “Measurement technique for increasing the linearity by optimising the source: impedance of RF power amplifiers, ” in IEEE Radio and Wireless Conf., pp. 10-13, 2000. [23]W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers, ” in Microw. Symp. Dig., MTT-S Int., vol. 33, pp. 1383-1394, Dec. 1985. [24]陳棓煌,向量網路分析儀量測校正方法之研究與實踐,國立中山大學電機工程學系研究所碩士論文,1996. [25]B. Luo, Y. X. Guo, S. Y. Wong, and L. C. Ong, “Modeling of 0.15μm InGaAs pHEMT up to 60 GHz, ” in IEEE Radio-Freq. Integration Tech., pp. 286-289, Dec. 2007. [26]U. Lott, “Measurement of magnitude and phase of harmonics generated in nonlinear microwave two-ports, ” in IEEE Trans. Microw. Theory and Tech., vol. 37, no. 10, pp. 1506-1511, Oct. 1989. [27]S. Y. Lee, Y. S. Lee, and Y .H. Jeong, “A novel phase measurement technique for IM3 components in RF power amplifiers, ” in IEEE Trans. Microw. Theory and Tech., vol. 54, no. 1, pp. 451-457, Jan. 2006. [28]杜至庸,線性化射頻功率放大器之數位基頻預失真技術之研究,國立中山大學電機工程學系研究所碩士論文,2007. [29]Y. J. E. Chen, M. Hamai, D. Heo, A. Sutono, S. Yoo, and J. Laskar, “RF power amplifier integration in CMOS technology, ” in IEEE MTT-S Microwave Symp. Dig., vol. 1, pp. 545-548, Boston, MA, June 2000. [30]R. Gupta, B. M. Ballweber, and D. J. Allstot, “Design and optimization of CMOS RF power amplifiers,” IEEE J. Solid-State Circuits, vol. 36, pp. 166-175, Feb. 2001. [31]K. C. Tsai and P. R. Gray, “A 1.9 GHz, 1-W CMOS class-E power amplifier for wireless communications,” IEEE J. Solid-State Circuits, vol. 34, pp. 962-969, July 1999. [32]C. Yoo and Q. Huang, “A common-gate switched, 0.9W class-E power amplifier with 41% PAE in 0.25μm CMOS, ” in VLSI Circuits Symp. Dig., Honolulu, HI, pp. 56-57, June 2000. [33]K. H. An et al., “Power-combining transformer techniques for fully -integrated CMOS power amplifiers, ” in IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008. [34]I. Aoki et al., “Distributed active transformer - a new power-combining and impedance-transformation technique, ” in IEEE Trans. Microw. Theory and Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002. [35]P. Haldi et al., “A 5.8GHz 1V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS, ” in IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008. [36]O. Lee and K. S. Yang, “A 1.8GHz 2-Watt fully integrated CMOS push-pull parallel-combined power amplifier design, ” IEEE Radio Freq. Integrated Circuits Symp., pp. 435-438, 2007. [37]K. H. An et al., “A2.4GHz fully integrated linear CMOS power amplifier with discrete power control, ” in IEEE Microw. and Wireless Comp. Lett., vol. 19, no. 7, July 2009. [38]N. O. Sokal and A. D. Sokal, “Class E - a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975. [39]趙哲寬,使用混合正交極座標調制架構之高效率射頻發射機之研製,國立中山大學電機工程學系研究所博士論文,2006. [40]A. Mazzanti and L. Larcher, “Analysis of reliability and power efficiency in cascode class-E PAs, ” IEEE J. Solid-State Circuits, vol. 41, pp. 1222-1229, May 2001. [41]T. Sowlati and D. M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier, ” IEEE J. Solid-State Circuits, vol. 38, pp. 1318-1324, Aug. 2003. [42]O. Lee et al., “Analysis and design of fully integrated high-power parallel-circuit class-E CMOS power amplifiers, ” IEEE TCS-I, vol. 57, no. 3, pp. 725-734, March 2010. [43]P. Perugupalli, Y. Xu, and K. Shenai, “Measurement of thermal and packaging limitations in LDMOSFET’s for RFIC application,” in Proc. IEEE Instrum. Meas. Technol. Conf., vol. 1, pp. 160-164, 1998. [44]A. R. Hefner and D. L. Blackburn, “Simulating the dynamic electrothermal behavior of power electronics circuits and systems, ” IEEE Trans. Power Electron., vol. 8, pp. 376-385, Oct. 1993. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:校內校外均不公開 not available 開放時間 Available: 校內 Campus:永不公開 not available 校外 Off-campus:永不公開 not available 您的 IP(校外) 位址是 3.14.132.178 論文開放下載的時間是 校外不公開 Your IP address is 3.14.132.178 This thesis will be available to you on Indicate off-campus access is not available. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 已公開 available |
QR Code |