Responsive image
博碩士論文 etd-0713118-175913 詳細資訊
Title page for etd-0713118-175913
論文名稱
Title
應用於非接觸脈搏傳遞時間量測之穿戴式雷達感測裝置
Wearable radar sensor for non-contact pulse transit time measurement.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-09
繳交日期
Date of Submission
2018-08-13
關鍵字
Keywords
穿戴式天線、脈搏傳遞時間、自我注入鎖定雷達、都卜勒連續波雷達、穿戴式健康監測器
self-injection-locked radar, wearable antenna, pulse transit time, doppler radar
統計
Statistics
本論文已被瀏覽 5790 次,被下載 0
The thesis/dissertation has been browsed 5790 times, has been downloaded 0 times.
中文摘要
本論文實現一套結合穿戴式微帶天線和單頻自我注入鎖定連續波雷達、距離相關連續波雷達雙模式架構的非接觸式雷達系統,並使用實驗室Labview軟體進行數據收集,達到生理訊號監測和脈搏傳遞時間的量測。首先簡要設計三組天線,分別為矩形微帶天線、環形微帶天線、和軟板天線做模擬和量測並加上其人體接近效應的影響。接著將這些天線應用在具有自我注入鎖定和距離相關雷達雙模式機制的單頻連續波雷達系統上,利用一顆具有注入端的壓控振盪器發出訊號經由分配器到胸腔和手腕的天線,一路訊號進行距離相關雷達架構的IQ解調,另一路則經由自我注入鎖定機制進行頻率解調,因此可同時量測到心跳以及脈搏的生理訊號,藉由量測到的心跳和脈搏波型尖峰時間差,發現其與醫學上使用的脈搏傳遞時間具有高度的相關性,本實驗利用Biopac公司的MP150生理訊號監測儀器,其採用心電訊號和光體積變化描記圖作為本實驗量測脈搏傳遞時間的參考標準進行比較,並以血壓計紀錄脈搏傳遞時間與血壓的關係。本論文之穿戴式生理監測雷達系統相較於傳統的接觸式的儀器,具有低成本、方便攜帶、舒適的特性。
Abstract
This thesis presents a non-contact radar system. This non-contact radar system uses wearable microstrip antenna in a single-frequency continuous-wave radar which operates concurrently with two different modes. The two different modes are: self-injection-locked CW mode (SIL mode) and range-correlated CW mode (RC CW mode). Then, the Labview software is used to collect the data and calculate the pulse transmit time.
To conduct this experiment, three antennas are designed first. These three antennas are: rectangular microstrip antenna, loop microstrip antenna, and flexible antenna. These three antennas are used in the radar system to detect human’s pulse and heartbeats. Also, the influences of human body on the antenna are taken into consideration. Second, these three antennas are applied in the radar system, operating with two modes, ie, SIL mode and RC CW mode. The radar system utilizes a voltage control oscillator with injection port to transmit RF signal to wrist and chest antennas through the power splitter. The wrist antenna detects movement due to pulse and makes oscillator enter the SIL state. And thus, a frequency demodulator can be used to obtain the waveform of pulse. On the other hand, the chest antenna detects the movements due to heartbeats and then an IQ demodulator can be used to obtain the waveform of heartbeats.
Based on Biopac company’s pulse transit time measurement using electrocardiography and photolethysmography sensors, the results show that the peak time difference between the two resultant output signals in the radar system is closely correlated with the pulse transit time. Compared to other contact sensors, the presented wearable physiological monitoring radar system takes the advantages of low cost, convenience, and comfort.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 vii
表次 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 血壓量測方法與脈搏傳遞時間 2
1.3 章節規劃……. 7
第二章 天線設計 8
2.1 矩形微帶天線設計 8
2.2 環形微帶天線設計 14
2.3 軟板天線設計 20
2.3.1基板參數萃取 20
2.3.2軟板天線設計 24
第三章 利用單頻連續波測量脈搏傳遞時間 30
3.1 自我注入鎖定雷達簡介 30
3.2 實驗系統架構 32
3.3 實驗設置與量測結果 34
第四章 結論 44
參考文獻 46
附錄A……….. 49
參考文獻 References
[1] M. I. Skolnik, Introduction to radar systems, 3rd ed. New York: McGraw Hill, pp. 14-19, 2001.
[2] J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave Apexcardiography,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 6, pp. 618-620, Jun. 1979.
[3] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, and J. Lin, “0.25/ spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radar for remote sensing of vital signs,” in 2002 IEEE Int. Solid State Circuits Conf. Tech. Dig. Papers, pp. 348–349.
[4] C. H. Chan, C. C. Chou and H. R. Chuang, “Integrated packaging design of low-Cost bondwire interconnection for 60-GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna,” IEEE Trans. Compon. Packag. Manuf. Technol vol. 8, no. 2, pp. 177-185, Feb. 2018.
[5] G. C. Smith, “A noncontact method for detecting acoustic emission using a microwave Doppler radar motion detector,” IEEE Trans Ultrason., Ferroelect., Freq. Control, vol. 52, no. 9, pp. 1613-1617, Sept. 2005.
[6] C. H. Chao, T. W. Hsu and C. H. Tseng, “Giving Doppler more bounce: A 5.8 GHz microwave high-sensitivity Doppler radar system,” IEEE Microw. Mag., vol. 17, no. 1, pp. 52-57, Jan. 2016.
[7] M. K. Singh et al., “System modeling and signal processing of microwave Doppler radar for cardiopulmonary sensing,” in International Conference on Signal Processing and Communication (ICSC). IEEE, 2015, pp. 227-232.
[8] L. Liu, M. Popescu, M. Rantz and M. Skubic, “Fall detection using doppler radar and classifier fusion,” in Proc. IEEE-EMBS Int. Conf. Biomedical Health Informatics, Hong Kong, Jan. 2012, pp. 180-183.
[9] C. Gu and C. Li, “From tumor targeting to speech monitoring: Accurate respiratory monitoring using medical continuous-wave radar sensors,” IEEE Microw. Mag., vol. 15, no. 4, pp. 66-76, June 2014.
[10] F. K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory and Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[11] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[12] Emelia J. Benjamin et al., “On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the american heart association,” Circulation, pp. e67-e492,2018.
[13] T. Stoeckel. Korotkoff Sounds: Definition & Phases. [Online]. Available: https://study.com/academy/lesson/korotkoff-sounds-definition-phases.html.
[14] G. Ogedegbe, and T. Pickering. “Principles and techniques of blood pressure measurement.” Cardiology clinics 28.4 (2010), pp. 571–586. Jun. 2018.
[15] C. C. Poon, Y. M. Wong, and Y. T. Zhang, “M-health: the development of cuff-less and wearable blood pressure meters for use in body sensor networks,” in Life Science Systems and Applications Workshop, 2006. IEEE/NLM, 2006, pp. 1-2.
[16] S.-Y. Ye, G.-R. Kim, D.-K. Jung, S.-W. Baik, and G.-R. Jeon, “Estimation of systolic and diastolic pressure using the pulse transit time,” Int. J.Biomed. Biological Eng., vol. 4, no. 7, pp. 303-308, Jan. 2010.
[17] A. Arza, J. Lazaro, E. Gil, P. Laguna, J. Aguilo, and R. Bailon, “Pulse transit time and pulse width as potential measure for estimating beat-to beat systolic and diastolic blood pressure,” in Proc. Computing in Cardiology Conf., Zaragoza, Spain, Sep. 2013, pp. 22-25.
[18] Heartisans 血壓手錶.[Online]. Available: http://www.heartisans.com
[19] Z. Aleksandra, “Blood pressure estimation using pulse transit time models,” M.S. thesis, Dept. C.S. Eng., Univ. Oulu, 2017.
[20] W. D. Peterson, D. A. Skramsted and D. E. Glumac. (2015). Phoenix Ambulatory Blood Pressure Monitor project sub-project:piezo film pulse sensor [Online]. Available: http://www.phoenix.tc-ieee.org/index.htm
[21] J. Proença, et al., “Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?,” Conf Proc IEEE Eng Med Biol Soc, vol. 2010, pp. 598-601, 2010.
[22] C. Gabriel, et al. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
[23] 邱建文,天線設計第八章,印刷迴路天線設計
[24] 徐偉軒,利用微帶線諧振法求材料之介電係數,國立雲林科技大學電機工程學系碩士論文,民國105年
[25] 賴啟彰,構裝材料之電氣特性萃取技術,國立高雄大學電機工程學系碩士論文,民國97年
[26] R. Adler, “A Study of Locking Phenomena in Oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351-357, June 1946.
[27] Zaber Technologies Inc. Zaber WIKI Available :http://www.zaber.com/wiki/Manuals/T-NA
[A1] G.A. Deschamps, “Microstrip microwave antennas,” Presented at the third USAF Symposium on Antennas, 1953.
[A2] H. Gutton and G. Baissinot, “Flat aerial for ultra high frequencies,” French Patent No. 703 113, 1955.
[A3] R. E. Munson, “Conformal microstrip antennas and microstrip phased arrays.” IEEE Trans. Antennas Propagat., vol. ap-22, no. 1, pp. 74-78, Jan 1974.
[A4] J. W. Howell, “Microstrip Antennas,” IEEE Trans. Antennas Propagat., vol. ap-23, no. 1, pp. 90-93, Jan 1975.
[A5] A. G. Derneryd, "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propagat, vol. 24, no. 6, pp. 846-851, November 1976.
[A6] L. C. Shen, S. A. Long, M. R. Allerding, and M. D. Walton, “Resonant frequency of a circular disc, printed-circuit antenna,” IEEE Trans. Antennas Propagat, vol. ap-25, no. 4, pp. 595-596, Jul 1977.
[A7] Y. T. Lo, D. Solomon and W. F. Richards, “Theory and experiment on microstrip antennas,” IEEE Trans. Antennas Propagat., vol. ap-27, no. 2, pp. 137-145, Mar 1979.
[A8] N. K. Uzunoglu, N. G. Alexopoulos, and J. G. Fikioris, “Radiation properties of microstrip dipoles,” IEEE Trans. Antennas Propagat., vol. ap-27, no. 6, pp. 853-858, Nov 1979.
[A9] K. R. Carver, J. W. Mink. “Microstrip antenna technology.” IEEE Trans. Antennas Propagat. vol. ap-29, no. 1, pp. 2-24, Jan. 1981.
[A10] W. F. Richards, Y. T. Lo, and D. D. Harrison, “An improved theory of microstrip antennas and applications,” IEEE Trans. Antennas Propagat., vol. ap-29, no. 1, pp. 38-46, Jan 1981.
[A11] M. C. Bailey and M. D. Deshpande, “Integral equation formulation of microstrip antennas,” IEEE Trans. Antennas Propagat., vol. ap-30, no. 4, pp. 651-656, July 1982.
[A12] 邱建文,天線設計第四章,Patch天線設計.
[A13] C. A. Balanis, Antenna theory, analysis and design, 2nd, New York: John Wiley& Sons, 1997, ch14.2.
[A14] C.A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New York,1989
[A15] R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Co., p. 183,1961.
[A16] 邱建文,天線設計第八章,印刷迴路天線設計
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.190.244
論文開放下載的時間是 校外不公開

Your IP address is 3.135.190.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code