Responsive image
博碩士論文 etd-0713118-182536 詳細資訊
Title page for etd-0713118-182536
論文名稱
Title
利用訊號微分頻率解調器之自我注入鎖定生理都卜勒雷達
Self-Injection-Locked Vital Sign Doppler Radar Using Signal Differentiation Frequency Demodulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-09
繳交日期
Date of Submission
2018-08-13
關鍵字
Keywords
心肺感測器、自我注入鎖定雷達、連續波雷達、波包檢測器、注入鎖定、微波微分器
Cardiopulmonary sensor, continuous wave radar, microwave differentiator, envelope detector, self-injection-locked radar
統計
Statistics
本論文已被瀏覽 5813 次,被下載 682
The thesis/dissertation has been browsed 5813 times, has been downloaded 682 times.
中文摘要
本論文實現自我注入鎖定雷達來感測人體生理徵象,並且研究訊號微分頻率機制,而相較於以往的延遲線頻率解調機制,此解調架構具有低成本、電路複雜度低、體積較小等優點。本論文大致分為兩大部分,第一部分主要為頻率解調器的研製,第二部分敘述雷達感測原理,並以實驗證實其感測靈敏度,而能應用於生理感測。
當電磁波處發射至目標物時,經由目標物反射注入回壓控振盪器中,使振盪器處於自我注入鎖定狀態,使系統產生因目標物胸腔位移造成的頻率調制訊號,而可以透過微波微分器,將原先的頻率調制訊號轉換為振幅調制訊號,再經由波包檢測器檢測,即可得到呼吸及心跳訊號。
本論文亦會提出此頻率解調架構的限制,並以理論及實驗來驗證,且討論如何解決此問題,使得此頻率解調機制得以應用於生理感測。最後,本論文會提出此頻率解調機制的優點及缺點,並提出有效的改善方法。
Abstract
In this thesis, self-injection locked (SIL) radar is utilized to detect vital sign, and the signal differentiated frequency demodulator is presented for use in the SIL radar. Compared with the delay line frequency demodulator, this frequency demodulator has low cost, low circuit complexity, and small size. This thesis is devided into two parts. First, this thesis will discuss how to design the frequency demodulator. Secondly, this thesis explains the sensing principle and the sensitivity of the radar system, which was comfirmed by the experiments and applied to cardiopulmonary monitoring.
When the electromagnetic wave is emitted to the subject, the reflected wave from the subject is received and injected into a voltage-controlled oscillator (VCO), so that, the oscillator is in self-injection locked, and outputs a frequency modulated signal due to chest movement of the subject. After passing through a microwave differentiator, the frequency modulated signal is converted into an amplitude modulated signal. In this way,the vital sign signal can be detected by a power detector.
This thesis also discusses the limitation of the signal differentiation frequency demodulator, and verifies it by the experiments applied to vital sign sensing. Finally, this thesis compares the advantages and disavantages of the frequency demodulators used in the SIL radar system.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 vii
表次 viii
第一章 序論 1
1.1 研究背景與動機 1
1.2 常見生理感測雷達 2
1.2.1 CW (continue wave)雷達 2
1.2.1 超寬頻雷達(Ultra Wide-Band Radar,UWB) 3
1.2.3 自我注入鎖定(Self-injection locked,SIL)雷達 5
1.3 章節規劃 6
第二章 訊號微分頻率解調器 7
2.1 微分器之設計 7
2.2 功率檢波器 13
2.3 運算放大器 18
第三章 自我注入鎖定生理都卜勒雷達 20
3.1 感測原理 20
3.1.1 延遲線解調原理 20
3.1.2 訊號微分頻率解調器原理 21
3.2 2.4 GHz單基式自我注入鎖定雷達測試 25
3.2.1 Delay line 解調機制 26
3.2.2 以訊號微分之解調機制 32
3.3 5.8 GHz單基式自我注入鎖定雷達測試 38
3.3.1 Delay line 解調機制 39
3.3.2 以訊號微分之解調機制 41
第四章 結論 47
參考文獻 48
參考文獻 References
[1] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001.
[2] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008
[3] K. M. Chen, D. Misra, H. Wang, H. R. Chuang and E. Postow, "An X-Band Microwave Life-Detection System," in IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, July 1986.
[4] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992.
[5] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection and systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105-114, Jan. 2000.
[6] W. Xu, C. Gu, C. Li and M. Sarrafzadeh, “Robust Doppler radar demodulation via compressed sensing,” IEEE Electron. Lett., vol. 48, no. 22, pp. 1428-1430, Oct. 2012.
[7] S. Guan, J. A. Rice, C. Li and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3111-3118, Dec. 2014.
[8] H. Zhao, H. Hong, L. Sun, F. Xi, C. Li, and X. Zhu, “Accurate DC offset calibration of Doppler radar via non-convex optimization,” IEEE Electron. Lett.,vol. 51, no. 16,pp. 1282-1284, Aug. 2015.
[9] D. T. Perkie, C. Benton and E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” Proc. IEEE Radar Conf., May 2009, pp. 1-3.
[10] C. Li, Y. Xiao and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., , vol. 54, no. 12, pp. 4464-4471, Dec. 2006.
[11] T. -Y. J. Kao, Y. Yan, T.- M. Shen, A. Y.-K. Chen and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, April 2013.
[12] W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27-33, March 1963.

[13] M. Z. Ikram, A. Ahmad and D. Wang, "High-accuracy distance measurement using millimeter-wave radar," 2018 IEEE Radar Conf. (RadarConf18), Oklahoma City, OK, 2018, pp. 1296-1300.
[14] C. Fowler, J. Entzminger and J. Corum, “Assessment of ultra-wideband (UWB) technology,” IEEE Aerosp. Electron. Syst. Mag., vol. 5, no. 11, pp. 45-49, Nov. 1990.
[15] R. S. Vickers, “Ultra-wideband radar-potential and limitations,” 1991 IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, 1991, pp. 371-374 vol.1.
[16] E. Schires, P. Georgiou and T. S. Lande, “Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas,” IEEE Trans. Biomed, Circuits Syst., vol. 12, no. 2, pp. 292-302, April 2018.
[17] F. Liang, M. Liu, H. Li, F. Qi, Z. Li and J. Wang, “Through-the-wall imagery of human vital signs using UWB MIMO bioradar,” 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, 2017, pp. 924-927.
[18] V. Nguyen and M. A. Weitnauer, “UWB impulse radar for vital signs sensing- A modeling framework for arbitrary periodic heart and lung motion,” 2015 IEEE Biomed. Circuits Syst. Conf. (BioCAS), Atlanta, GA, 2015, pp. 1-4
[19] S. Q. Yao, S. Y. Wu, K. Tan, S. B. Ye and G. Y. Fang, “A vital sign feature detection and search strategy based on multiple UWB life-detection-radars,” 2016 16th Int. Conf. on Ground Penetrating Radar (GPR), Hong Kong, 2016, pp. 1-6.
[20] D. T. Wisland, K. Granhaug, J. R. Pleym, N. Andersen, S. Støa and H. A. Hjortland, “Remote monitoring of vital signs using a CMOS UWB radar transceiver,” 2016 14th IEEE Int. New Circuits and Syst. Conf. (NEWCAS), Vancouver, BC, 2016, pp. 1-4
[21] F. K. Wang et al., “An injection-locked detector for concurrent spectrum and vital sign sensing,” 2010 IEEE MTT-S Int. Microw. Symp., Anaheim, CA, 2010, pp. 768-771.
[22] F. K. Wang, T. S. Horng, K. C. Peng, J. K. Jau, J. Y. Li and C. C. Chen, “Single-Antenna Doppler Radars Using Self and Mutual Injection Locking for Vital Sign Detection With Random Body Movement Cancellation,” IEEE Trans. Microw. Theory and Techn., vol. 59, no. 12, pp. 3577-3587, Dec. 2011.
[23] F. K. Wang et al., “A Novel Vital-Sign Sensor Based on a Self-Injection-Locked Oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[24] M. C. Tang, C. Y. Kuo, D. C. Wun, F. K. Wang and T. S. Horng, “A Self- and Mutually Injection-Locked Radar System for Monitoring Vital Signs in Real Time With Random Body Movement Cancellation," in IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4812-4822, Dec. 2016.
[25] N. M. Mishra, P. Jain, N. P. Gupta and Pramila, “Design of second order differentiator using micro-strip lines,” 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 2016, pp. 1-4.
[26] Ching-Wen Hsue, Lin-Chuan Tsai and Kuo-Lung Chen, “Implementation of first-order and second-order microwave differentiators,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1443-1448, May 2004.
[27] Ching-Wen Hsue, Tun-Ruey Cheng and Hwan-Mei Chen, “A second-order microwave differentiator,” IEEE Microwave Wireless Comp. Lett., vol. 13, no. 3, pp. 137-139, March 2003
[28] Da-Chiang Chang and Ching-Wen Hsue, “Design and implementation of filters using transfer functions in the Z domain,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 5, pp. 979-985, May 2001.
[29] S. Haykin, “Amplitude Modulation,” Communication Systems, 5th ed. New York: Wiley, 2008,pp 74-101.
[30] Wiki. [online] Available : https://en.wikipedia.org/wiki/Amplitude_modulation
[31] Linear Technology, RF power detector LTC5508 Data Sheet, [online] Available:http://www.analog.com/media/en/technical-documentation/data-sheets/5508fa.pdf
[32] Analog Devices, Rail-to-rail Operational Amplifier AD8041 Data sheet, [online] Available:http://www.analog.com/media/en/technical-documentation/data-sheets/AD8041.pdf
[33] R. Adler, “A study of locking phenomena in oscillators,” Proc., IRE., vol 34, no.6, pp.351-357, Jun. 1946
[34] 蕭介勛,本地振盪源的注入鎖定與牽引現象研究,國立中山大學電機工程學系碩士論文,民九十七年
[35] T. S. Horng, “Self-injection-locked radar: An advance in continuous-wave technology for emerging radar systems,” 2013 Asia-Pacific Microw. Conf. Proc. (APMC), Seoul, 2013, pp. 566-569.
[36] C. H. Tseng, J. K. Huang, L. T. Yu and C. L. Chang, “A cost-effective wearable vital-sign sensor with self-oscillating active antenna based on envelope detection technique,” IEEE MTT-S Int. Microw. Symp. Dig., Honololu, HI, USA,2017, Jun. 2017.
[37] C. H. Tseng, L. T. Yu, J. K. Huang and C. L. Chang, “A Wearable Self-Injection-Locked Sensor With Active Integrated Antenna and Differentiator-Based Envelope Detector for Vital-Sign Detection From Chest Wall and Wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511-2521, May 2018.
[38] C. H. Tseng and L. T. Yu, “Self-injection-locked radar sensor with active-integrated-antenna and differentiator-based demodulator for noncontact vital sign detection,” Proc. IEEE Topical Conf. Sensors and Sensor Networks (WiSNet), Anaheim, CA, USA, Jan. 2018.
[39] S. Haykin, “Phase and Frequency Modulation,” Communication Systems, 5th ed. New York: Wiley, 2008,pp 102-145.
[40] 周傳期,利用Wifi訊號偵測手勢及深度學習辨識研究,國立中山大學電機工程學系碩士論文,民107年
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code