論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-14
校外 Off-campus:開放下載的時間 available 2026-08-14
論文名稱 Title |
Sub-6 GHz之主動式可重構智慧表面設計 Design of Active Reconfigurable Intelligent Surface for Sub-6 GHz |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
69 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-02 |
繳交日期 Date of Submission |
2023-08-14 |
關鍵字 Keywords |
可重構智慧表面、RIS通道模型、相移器、自動化量測、結構模式 reconfigurable intelligent surface, RIS channel mode, phase shifter, automatic measurement, structural mode |
||
統計 Statistics |
本論文已被瀏覽 170 次,被下載 0 次 The thesis/dissertation has been browsed 170 times, has been downloaded 0 times. |
中文摘要 |
本論文提出RIS之通道模型,這個模型包含數位相移器在不同相移狀態時之損耗以及考量天線極化的影響,使此模型更加貼合實際無線通訊環境的運用,透過這個模型可以快速驗證在RIS具有多個單元時所能獲得的增益。此外,提出了一種主動式可重構智慧表面(RIS),主動式RIS是由輻射天線、RF數位相移器和低雜訊放大器(LNA)組成,在RIS陣列中則需要額外的功率分配器來輔助;相移器部分採用商用晶片MAPS-01044。相對於被動式RIS的架構,主動式RIS以額外功率消耗為代價,增強整體通訊環境的效率。最後驗證RIS之結構模式對於整體通訊強度之影響。 本論文進行該主動式可重構智慧表面的可行性測試並實際製作,透過架設自動化量測平台量測信號通道中的能量強度以及訊雜比,驗證本論文所提出架構帶來之效果。 |
Abstract |
This paper proposes a channel model for reconfigurable intelligent surfaces (RIS). The model takes into account the losses incurred by digital phase shifters in different phase states and considers the influence of antenna polarization, making it more suitable for practical wireless communication environments. This model enables quick validation of the gains achievable with RIS when multiple units are employed. Additionally, an active reconfigurable intelligent surface is introduced. The active RIS consists of radiating antennas, RF digital phase shifters, and low-noise amplifiers (LNA), with additional power splitters required in the RIS array. The commercially available chip, MAPS-01044, is used for the phase shifters. Compared to passive RIS architectures, the active RIS enhances overall communication efficiency at the cost of additional power consumption. Finally, the impact of the RIS structural mode on the overall communication strength is validated. This paper conducts feasibility testing and practical implementation of the proposed active reconfigurable intelligent surface. An automated measurement platform is set up to measure the energy intensity and signal-to-noise ratio of the signal channels. This is done to validate the effectiveness of the architecture proposed in this paper. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 緒論 1 1.1研究背景 1 1.2 可重構智慧表面 2 1.3被動式RIS與主動式RIS 5 1.4 RIS環境通道 6 1.5章節規劃 7 第二章 一單元RIS之通道模型驗證 8 2.1 RIS單元以及數位相移器介紹 8 2.1.1微帶天線理論 9 2.1.2微帶天線設計 11 2.1.3數位相移器 15 2.2 數位相移器及RIS模型建立 18 2.2.1數位相移器之模型 18 2.2.2 RIS單元之雷達截面積 21 2.3 RIS通道模型建立 22 2.3.1 RIS天線模式介紹 23 2.3.2 直射路徑模型 26 2.3.3 RIS通道模型 27 2.3.4 RIS通道模型驗證 29 第三章 主動式RIS實驗量測 33 3.1 主動式RIS先期實驗及量測平台介紹 33 3.1.1數位量測平台 33 3.1.2 一單元主動式RIS單元量測 34 3.2 主動式RIS數位量測平台量測結果 37 3.2.1一單元主動式RIS量測結果 38 3.2.3 兩單元(一收一發)主動式RIS量測 40 3.2.4 五單元(一收四發)主動式RIS量測 42 3.3 結構模式以及天線模式之先期測試 45 3.3.1 貼片天線與PIFA天線之比較 45 第四章 結論與未來展望 51 參考文獻 52 |
參考文獻 References |
J. G. Andrews et al., "What Will 5G Be?," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, 2014. M. Agiwal, A. Roy, and N. Saxena, "Next Generation 5G Wireless Networks:A Comprehensive Survey," IEEE Communications Surveys & Tutorials, vol.18, no. 3, pp. 1617-1655, 2016. C. X. Wang et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, vol. 52, no. 2, pp. 122-130, 2014. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014. M. Xiao et al., "Millimeter Wave Communications for Future Mobile Networks," IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909-1935, 2017. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems," IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436-453, 2016. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial," IEEE Transactions on Communications, vol. 69, no. 5, pp. 3313-3351, 2021. L. Dai et al., "Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results," IEEE Access, vol. 8, pp. 45913-45923, 2020. F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, and D. Lippens, "Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal," Applied Physics Letters, vol. 97, no. 13, p. 134103, 2010. H. Chen, W.-B. Lu, Z.-G. Liu, and M.-Y. Geng, "Microwave Programmable Graphene Metasurface," ACS Photonics, vol. 7, no. 6, pp. 1425-1435, 2020. H.-X. Xu et al., "Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch," Scientific Reports, vol. 6, no. 1, p. 38255, 2016. F. Costa and M. Borgese, "Electromagnetic Model of Reflective Intelligent Surfaces," IEEE Open Journal of the Communications Society, vol. 2, pp. 1577-1589, 2021. W. Tang et al., "Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design," IEEE Wireless Communications, vol. 27, no. 2, pp. 180-187, 2020. X. Chen et al., "Design and Implementation of MIMO Transmission Based on Dual-Polarized Reconfigurable Intelligent Surface," IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2155-2159, 2021. M. D. Renzo et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come," EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, p. 129, 2019/05/23 2019. C. A. Balanis, Antenna Theory: Analysis and Design. 3rd ed. New York, NY, USA: Wiley, 2005. K.-L. Wong, C.-Y. Tsai, and J.-Y. Lu, “Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1765–1778, Apr. 2017. X. Pei et al, “RIS-aided wireless communications: prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, Dec. 2021. C. A. Balanis, Advanced Engineering Electromagnetics. 2nd ed. Hoboken, NJ, USA: Wiley, 2012. O ̈.O ̈zdogan, E. Bj ¨ ornson, and E. G. Larsson, “Intelligent Reflecting ¨ Surfaces: Physics, Propagation, and Pathloss Modeling,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 581–585, May 2020. S. Ren, K. Shen, Y. Zhang, X. Li, X. Chen, and Z. -Q. Luo, “Configuring intelligent reflecting surface with performance guarantees: blind beamforming,” IEEE Trans. Wireless Commun. (Early Access), Nov. 2022. M. Dunna, C. Zhang, D. Sievenpiper, and D. Bharadia, “ScatterMIMO: enabling virtual MIMO with smart surfaces,” in Proc. 26th Annu. Int.Conf. Mobile Comput. Netw., New York, USA, Apr. 2020, pp. 1–14. J. Rao et al, “A novel reconfigurable intelligent surface for wide-angle passive beamforming,” IEEE Trans. Microw. Theory Tech., vol. 70, no. 12, pp. 5427–5439, Dec. 2022. K. K. Kishor and S. V. Hum, “An amplifying reconfigurable reflectarray antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 197–205, Jan. 2012. A. Darvazehban, S. Ahdi Rezaeieh, A. Zamani, and A. M. Abbosh,“Pattern reconfigurable metasurface antenna for electromagnetic torso imaging,” IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5453–5462, Aug. 2019. A. Darvazehban, S. A. Rezaeieh, and A. M. Abbosh, “Programmable metasurface antenna for electromagnetic torso scanning,” IEEE Access, vol. 8, pp. 166 801–166 812, Sep. 2020. Z. Zhang et al, “Macromodeling of Reconfigurable Intelligent Surface Based on Microwave Network Theory,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 8707–8717, Oct. 2022. K.-L. Wong and J.-Y. Lu, “3.6-GHz 10-antenna array for MIMO operation in the smartphone,” Microw. Opt. Technol. Lett., vol. 57, pp. 1699–1704, Jul. 2015. K.-L. Wong and J.-Y. Lu, “Small-size narrow open-slot antenna for the 2.4/5.2/5.8-GHz WLAN operation along the side edge of the metalframed smartphone,” Microw. Opt. Technol. Lett., vol. 58, pp. 886–892, Apr. 2016 G.Perez-Palomino et al, “Design and experimental validation of liquid crystal-based reconfigurable reflectarray elements with improved bandwidth in F-band,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1704–1713, Apr. 2013. X. Li et al, “Broadband Electronically Scanned Reflectarray Antenna With Liquid Crystals,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 3, pp. 396–400, Mar. 2021. R. Guirado, G. Perez-Palomino, M. Ferreras, E. Carrasco, and M. Can ̃o-Garcıa, “Dynamic modeling of liquid crystal-based metasurfaces and its application to reducing reconfigurability times,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11 847–11 857, Dec. 2022. H. Jiao, H. Liu, and Z. Wang, "Reconfigurable Intelligent Surfaces aided Wireless Communication: Key Technologies and Challenges," in 2022 International Wireless Communications and Mobile Computing (IWCMC),in Proc, pp. 1364-1368, 30 May-3 June 2022 2022 Z. Zhang et al, “Active RIS vs. passive RIS: Which will prevail in 6G?”IEEE Trans. Commun. ( Early Access ), Dec. 2022. J. Huang et al, “Reconfigurable intelligent surfaces: channel characterization and modeling,” Proc. IEEE, vol. 110, no. 9, pp. 1290–1311, Sep.2022 Y. Yuan et al, “Recent progress in research and developments for reconfigurable intelligent surface,” ZTE Commun., vol. 20, no. 1, pp. 3–13, Mar. 2022. E. Basar, I. Yildirim, and F. Kilinc, “Indoor and outdoor physical channel modeling and efficient positioning for reconfigurable intelligent surfaces in mmWave bands,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8600–8611, Dec.2021. J. Dang et al, “A geometry-based stochastic channel model and its application for intelligent reflecting surface assisted wireless communication,” IET Commun., vol. 15, pp. 421–434, Feb. 2021 Y. Sun, C.-X. Wang, J. Huang, and J. Wang, “A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts,” IEEE Trans. Cognit. Commun. Netw., vol. 7, no. 2, pp. 496–510, Jun. 2021. Y. Liu and C. D. Sarris, “Efficient propagation modeling for communication channels with reconfigurable intelligent surfaces,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 10, pp. 2120–2124, Oct. 2022. Y. Liu and C. D. Sarris, “Propagation modeling for reconfigurable intelligent surface-enabled links based on an effective complex radar cross-section,” TechRxiv., 2022. [Online]. Available: https://doi.org/10.36227/techrxiv.21552420.v1 H. Kim, J. Kim, and J. Oh, “Communication a novel systematic design of high-aperture-efficiency 2D beam-scanning liquid-crystal embedded reflectarray antenna for 6G FR3 and radar applications,” IEEE Trans. Antennas Propag., vol. 70, no. 11, pp. 11 194–11 198, Nov. 2022. S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflectingsurface: practical phase shift model and beamforming optimization,”IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Sep. 2020. Y. Zhao, B. Clerckx, and Z. Feng, “IRS-aided SWIPT: joint waveform, active and passive beamforming design under nonlinear harvester model,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1345–1359, Feb.2022. M. R. Camana, C. E. Garcia, and I. Koo, “Rate-splitting multiple access in a MISO SWIPT system assisted by an intelligent reflecting surface,” IEEE Trans. Green Commun. Netw., vol. 6, no. 4, pp. 2084–2099, Dec.2022. B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360°reflection phase tuning,” Sci. Rep., vol. 3, no. 1, p. 3059–3064, Oct. 2013. H. Pues and A. v. d. Capelle, “Accurate transmission-line model for the rectangular microstrip antenna,” IEE Proceedings H (Microwaves, Optics and Antennas), vol. 131, no. 6, pp. 334-340. D. Pozar, “A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 12, pp. 1439-1446, 1986. W. L. Stutzman and G. A. Thiele, Antenna theory and design. John Wiley & Sons, 2012. R. Garg, P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip antenna design handbook. Artech house, 2001. S. F. Farida, P. M. Hadalgi, P. V. Hunagund, and S. R. Ara, "Effect of substrate thickness and permittivity on the characteristics of rectangular microstrip antenna," in 1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254),in Proc, pp. 598-599, 6-10 July 1998 K. Budayawan, M. Isa, A. Ismail, and A. Raja Syamsul, "Implementation model of rectangular microstrip antenna with multilayer air gap," in 2011 IEEE International RF & Microwave Conference,in Proc, pp. 274-277, 12-14Dec. 2011 H.-S. Lee and B.-W. Min, “W-band CMOS 4-Bit phase shifter for high power and phase compression points,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 1–5, Jan. 2015. D. M. Pozar, Microwave Engineering. Hoboken, NJ, USA: Wiley,2012. R. C. Hansen, “Relationships between antennas as scatterers and asradiators,” Proc. IEEE, vol. 77, no. 5, pp. 659–662, May 1989. L. Gan, W. Jiang, Q. Chen, X. Li, and Z. Zhou, “Analysis and reduction on in-band RCS of Fabry-Perot antennas,” IEEE Access, vol. 8, pp. 146 697–146 706, Aug. 2020. E. Bjornson, O. T. Demir, and L. Sanguinetti, “A primer on near-field ¨beamforming for arrays and reconfigurable intelligent surfaces,” in Proc.Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA, Oct.2021, pp. 105–112. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-14 校外 Off-campus:開放下載的時間 available 2026-08-14 您的 IP(校外) 位址是 3.141.29.202 現在時間是 2024-11-22 論文校外開放下載的時間是 2026-08-14 Your IP address is 3.141.29.202 The current date is 2024-11-22 This thesis will be available to you on 2026-08-14. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-14 |
QR Code |