論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2026-08-14
校外 Off-campus:開放下載的時間 available 2026-08-14
論文名稱 Title |
應用於存在感測之調頻相位自我注入鎖定雷達 Occupancy Detection Using FMPSIL Radars |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
72 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2023-08-02 |
繳交日期 Date of Submission |
2023-08-14 |
關鍵字 Keywords |
調頻相位自我注入鎖定雷達、廣義概似比檢驗、存在感測、多人感測、特徵值分解 frequency-modulated phase-and self-injection-locked radar, generalized likelihood ratio test, presence detection, multi-person sensing, eigenvalue decomposition |
||
統計 Statistics |
本論文已被瀏覽 109 次,被下載 0 次 The thesis/dissertation has been browsed 109 times, has been downloaded 0 times. |
中文摘要 |
本論文使用基於廣義概似比的兩種檢定統計法,分別為算術平均數與幾何平均數法以及訊號子空間特徵值法,結合操作在5.8 GHz ISM頻段的調頻相位自我注入鎖定雷達。論文中所提出的雷達系統結合演算法運用於判斷環境中是否存在移動物體,以克服其他感測器誤判率高且無法偵測靜止不動物體的缺點。具有測距能力的調頻相位自我注入鎖定雷達可進一步偵測移動物體距離天線的距離,並且透過第二次檢定統計判斷環境中存在1或2名受測者。 在運算過程中,對於雷達系統的輸出訊號僅需進行傅立葉轉換、共變異數運算以及特徵值分解,相對於傳統的方法動輒二至三個周期以上,本論文所使用的演算法僅需要一個周期的時間即可進行判斷。在人體存在感測實驗中,感測距離為3至5公尺,判斷準確率可達95%,誤判率最低僅為0.4%,訊號週期平均約為5秒時,所需判斷時間為5秒。 |
Abstract |
This thesis uses two different types of test statistics methods based on the generalized likelihood ratio, respectively arithmetic to geometric mean method and the signal-subspace eigenvalues method. These methods are applied to a frequency-modulated phase-and self-injection-locked radar operating in the 5.8 GHz ISM band. The radar system, integrated with the algorithms presented in this thesis, is used to detect the presence of moving objects in the environment, overcoming the limitations of other sensors with high false alarm rates and inability to detect stationary objects. The frequency-modulated phase-locked radar with ranging capability is able to measure the distance between the radar and the moving objects. Furthermore, by applying a second statistical test, the algorithm can determine the presence of either one or two targets in the environment. In terms of computation, the radar system's output signal only requires Fourier transform, covariance calculation, and eigenvalue decomposition. Compared to traditional methods, which often take two to three cycles or more, the algorithm used in this thesis only requires one cycle for detection. In human presence experiments, with sensing distances ranging from 3 to 5 meters, the detection accuracy reaches 95%, and the lowest false alarm rate is only 0.4%. With an average signal period of approximately 5 seconds, the required detection time is 5 seconds. |
目次 Table of Contents |
論文審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖次 vii 表次 x 第一章 序論 1 1.1研究背景 1 1.2偵測文獻探討 2 1.3雷達系統 5 1.3.1正交相位自我注入鎖定雷達 5 1.3.2頻率調變相位自我入鎖定雷達 7 第二章 存在感測理論與雷達訊號處理流程 10 2.1假設檢驗 10 2.1.1二元假設檢驗 10 2.1.2最大概似估計 11 2.1.3廣義概似比檢驗 12 2.1.4接收者操作特徵曲線 13 2.2檢定統計量之數學推導及證明 14 2.2.1雜訊分析 15 2.2.2算術平均數與幾何平均數法 16 2.2.3訊號子空間與特徵值法 18 2.3雷達系統之訊號處理 20 2.3.1正交相位自我注入鎖定雷達 20 2.3.2頻率調變相位自我注入鎖定雷達 24 第三章 雷達系統設置與理論驗證 29 3.1系統架構 29 3.1.1正交相位自我注入鎖定雷達 29 3.1.2頻率調變相位自我注入鎖定雷達 33 3.2系統與環境雜訊 35 3.3雷達訊號模擬 37 3.4 雷達訊號結合GLRT模擬 40 第四章 人體存在感測實驗 43 4.1致動器實驗 43 4.2 人體存在感測實驗設置 45 4.3 人體量測結果 46 4.3.1 QPSIL雷達量測結果 46 4.3.2 FMPSIL雷達量測結果 48 4.4 閥值統計 53 第五章 結論 58 參考文獻 59 |
參考文獻 References |
[1] 臺灣經濟部能源局[Online] Available: https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx?menu_id=798 [2] BrightLec Electrical, Can occupancy sensors save me money? [Online] Available: https://brightlec.co.uk/can-occupancy-sensors-save-me-money/ [3] Asmag [Online] Available: https://www.asmag.com.tw/suppliers/productcontent.aspx?co=canaano&id=794 [4] Twcn.rs [Online] Available: https://twcn.rs-online.com/web/p/bbc-micro-bit-add-ons/2153181 [5] Energy.gov, Wireless Occupancy Sensors for Lighting Controls [Online] Available:https://www.energy.gov/femp/articles/wireless-occupancy-sensors- lighting- controls-applications-guide-federal-facility [6] R.J Doviak and D.S Zmic, “Doppler radar and weather observations”, New York: Acadamic, 1993. [7] S. Guan , J. Rice, C. Li, Y. Li, and G. Wang, “Structural displacement measurements using DC coupled radar with active transponder,” Struct. Control Health Monitor., vol. 24, no. 4, Apr. 2017. [8] C. Gu, C. Li, J. Lin, J. Long, and J. Huangfu et al., “Instrument-based noncontact doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1580– 1588, Jun. 2010. [9] H. -R. Chuang, H. -C. Kuo, F. -L. Lin, T. -H. Huang, and C. -S. Kuo et al., “60- GHz millimeter-wave life detection system (MLDS) for noncontact human vital- signal monitoring,” IEEE Sensors. J., vol. 12, no. 3, pp. 602–609, Mar. 2012. [10] C. Li and J. Lin, “Optimal carrier frequency of non-contact vital sign detectors,” IEEE Radio Wireless Symp. Dig., Long Beach, CA, Jan. 2007, pp. 281–284. [11] C. Chou, W. Lai, Y. Hsiao, and H. Chuang, “60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1635–1643, Mar. 2018. [12] T. J. Kao, Y. Yan, T. Shen, A. Y. Chen, and J. Lin, “Design and analysis of a 60- GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013. [13] E. Yavari, C. Song, V. Lubecke, and O. Boric-Lubecke, “System on-chip based Doppler radar occupancy sensor,” in Proc. IEEE Eng. Med. Biol. Soc. Conf., pp. 1913–1916, 2011. [14] O. Boric-Lubecke, V. M. Lubecke, A. Host-Madsen, D. Samardzija, and K. Cheung, “Doppler radar sensing of multiple subjects in single and multiple antenna systems,” in Proc. on Telecommunication in Modern Satellite, Cable and Broadcasting Services Conf., Nis, Serbia, Sept. 2005, vol. 1, pp. 7–11. [15] D. Samardzija, B. Park, O. Boric-Lubecke, V. Lubecke, and A. Host-Madsen et al., “Experimental evaluation of multiple antenna techniques for remote sensing of physiological motion,” IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, Jun.2007, pp. 1735–1738. [16] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke, “Detection of multiple heartbeats using Doppler radar,” in Proc. IEEE Int. Acoust., Speech, Signal Process. Conf., Toulouse, France, May 2006, vol. II, pp. 1160–1163. [17] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, and J. Lin et al., “A novel vital- sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4112–4120, Dec. 2010. [18] Y. Xiao, J. Lin, Boric-Lubecke, and V. M. Lubecke, “Frequency tuning techniquefor remote detection of heartbeat and respiration using lowpower double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 5, pp. 2023–2032, May 2006. [19] B.-K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1073–1079, May 2007. [20] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011. [21] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1-3 [22] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase-and self- injection-locked radar for detecting vital signs with efficient elimination of dc offsets and null points,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 685–695, Jan. 2013. [23] G. Wang, J.-M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez-Garcia, “Application of linear-frequency-modulated continuous-wave (LFMCW)radars for tracking of vital signs,” IEEE Trans. Microw. Theory Techn.,vol. 62, no. 6, pp. 1387–1399, Jun. 2014. [24] Jingtao Liu, Yuchen Li, Changzhi Li, Changzhan Gu, and Jun-Fa Mao, “Accurate measurement of human vital signs with linear FMCW radars under proximity stationary clutters,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1393–1404, 2021. [25] M. I. Skolnik, “CW and frequency-modulated radar,” in Introduction to Radar Systems, 3rd ed. New York, NY, USA: McGraw-Hill, 2001, pp. 68–100. [26] F.-K. Wang, P.-H. Juan, D.-M. Chian, and C.-K. Wen, “Multiple range and vital sign detection based on single-conversion self-injection-locked hybrid mode radar with a novel frequency estimation algorithm,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1908–1920, May 2020. [27] B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev, vol. 32, pp.97-109, 1928. [28] H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev, vol. 32, pp.110-110, 1928. [29] Flicker noise, WIKI [Online] Available: https://en.wikipedia.org/wiki/Flicker_noise [30] Lemons, Don S., “An Introduction to Stochastic Processes in Physics,” The Johns Hopkins University Press, p. 34, 2002 [31] Horn Roger A. and Johnson Charles R., “Matrix Analysis,” 2nd ed. Cambridge University Press, 2013. [32] K. Hoffman and R. Kunze, “Linear Algebra,” 2nd ed., Prentice Hall Inc., Upper Saddle River, 1971. [33] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press, 2004. [34] R. Zhang, T. J. Lim, Y.-C. Liang, and Y. Zeng, “Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach,” IEEE Trans. Commun., vol. 58, no. 1, pp. 84–88, Jan. 2010. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2026-08-14 校外 Off-campus:開放下載的時間 available 2026-08-14 您的 IP(校外) 位址是 13.58.161.115 現在時間是 2024-11-22 論文校外開放下載的時間是 2026-08-14 Your IP address is 13.58.161.115 The current date is 2024-11-22 This thesis will be available to you on 2026-08-14. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2026-08-14 |
QR Code |