Responsive image
博碩士論文 etd-0715106-165637 詳細資訊
Title page for etd-0715106-165637
論文名稱
Title
頻率合成器之分數式架構非線性效應研究與混合訊號IC實現
The Fractional-N Nonlinearity Study and Mixed-Signal IC Implementation of Frequency Synthesizers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-27
繳交日期
Date of Submission
2006-07-15
關鍵字
Keywords
差異積分調制器、混合訊號、非線性效應、鎖相迴路、分數式頻率合成器
CMOS, Phase-Locked Loop, Mixed-Signal, Nonlinearity, Delta-Sigma Modulator, Fractional-N Frequency Synthesizer
統計
Statistics
本論文已被瀏覽 5815 次,被下載 3843
The thesis/dissertation has been browsed 5815 times, has been downloaded 3843 times.
中文摘要
中文提要:
在採用差異積分調制器之分數式頻率合成器之中,受非線性現象影響而交互調變之量化雜訊可視為污染頻率合成器訊號頻譜純淨度之主要雜訊源。為了探討此非線性現象與研究改善方法,在理論上本論文應用白色量化雜訊理論與非線性分析方法模擬出差異積分調制器在不同階數與架構下量化雜訊之分佈情況,以及使用安捷倫公司所研發的模擬軟體工具ADS來輔助預測頻率合成器之整體相位雜訊表現。實作部分本論文實際完成2.4GHz分數式頻率合成器hybrid模組,在使用不同階數與架構的差異積分調制器,並且考慮變動鎖相迴路頻寬以及參考頻率等條件下量測其相位雜訊。本論文另一個重點是以台積電0.18μm CMOS製程實現2.4GHz鎖相迴路晶片,其供應電壓1.8伏特、消耗電流27mA,操作頻率範圍2120~2380MHz。在迴路頻寬50kHz與參考頻率20MHz下,上下跳頻80MHz時所測得鎖入時間約為40μs,相位雜訊距載波100kHz處約為-90dBc/Hz。
Abstract
Abstract:
For the fractional-N frequency synthesizers using delta-sigma modulation techniques, the noise source dominant to degrade the spectral purity comes from phase intermodulation of quantization noise due to the PLL nonlinearity. To study and improve the PLL nonlinearity effect, this thesis applies the theory of white quantization noise and nonlinear analysis method to simulate the frequency responses of quantization noises in delta-sigma modulators (DSM) with different order and in various architecture. With the help of Agilent EEsof’s ADS tool, the phase noise performance of the studied fractional-N frequency synthesizers can be well predicted. For demonstration, this thesis work implements a 2.4 GHz fractional-N frequency synthesizer hybrid module, and measures the phase noise under considering various combinations of DSM order and architecture, PLL bandwidth and reference frequency. Another demonstration of this thesis is to implement a PLL IC using 0.18 μm CMOS process. The implemented PLL IC operates in the frequency range from 2120 to 2380 MHz with a supply voltage of 1.8 V and a current consumption of 27 mA. Under the test condition of reference frequency and PLL bandwidth equal to 20 MHz and 50 kHz, respectively, the measured phase noise is 90 dBc/Hz at an offset frequency of 100 kHz and the measured stable time is about 40 μs for a frequency jump of 80MHz.
目次 Table of Contents
目錄
目錄 Ⅰ
圖表目錄 Ⅱ
第一章 序論 1
1.1 簡介 1
1.2 章節規劃 2
第二章 頻率合成器之分數式架構非線性效應研究 4
2.1 頻率合成器之非線性現象 4
2.2 高階差異積分調制器架構與設計 6
2.3 差異積分調制器之理論分析與模擬 11
2.4分數式頻率合成器之軟體輔助模擬 18
第三章 2.4 GHz鎖相迴路CMOS晶片設計 24
3.1 相位頻率偵測器 24
3.2 電荷幫浦 27
3.3多模數除頻器 30
3.4 壓控振盪器 34
第四章 2.4 GHz頻率合成器Hybrid模組與鎖相迴路CMOS晶片之實現與量測 38
4.1 分數式頻率合成器模組之實作 38
4.2 分數式頻率合成器模組之測試 45
4.3 鎖相迴路晶片之量測 49
第五章 結論 62
參考文獻 64





圖表目錄
第二章
圖2.1 PFD特性曲線…………………………………………………………5
圖2.2 電荷幫浦 6
圖2.3 一階差異積分調制器 7
圖2.4 MASH 1-1-1架構 8
圖2.5 DSM架構之輸出模數範圍比較 9
圖2.6 單迴路差異積分調制器架構 9
圖2.7 不同截止頻率三階Butterworth之|NTF(z)|比較 10
圖2.8 三階單迴路差異積分調制器(Gmax = 3.1) 11
圖2.9 雜訊轉移函數之絕對值 12
圖2.10 雜訊轉移函數表現之dB值 12
圖2.11 經差異積分調制器雜訊整形後之相位雜訊 14
圖2.12 模數變化 16
圖2.13 除頻器之輸出相位變化 16
圖2.14 非線性分析方法之模型 17
圖2.15 偵測死帶0ps的相位雜訊 17
圖2.16 偵測死帶400ps的相位雜訊 17
圖2.17 分數式頻率合成器模擬環境設定 20
圖2.18 頻率合成器模擬電路 21
圖2.19 利用Lesson's Model逼近實際量測之相位雜訊 22
圖2.20 模擬時引入壓控振盪器雜訊 22
圖2.21 分數式頻率合成器之模擬相位雜訊 23
表2.1 各雜訊轉移函數之整理……………………………………….……….... 12
第三章
圖3.1 傳統式相位頻率偵測器………………………………………..……. 25
圖3.2 修正型預先充電相位頻率偵測器(MPTPFD) 25
圖3.3 PFD輸出波形當兩輸入訊號 26
圖3.4 低頻操作100kHz(相位差180度) 27
圖3.5電流導引式電荷幫浦 28
圖3.6 輸出電流直流特性。 29
圖3.7 電荷幫浦輸出電流不匹配曲線。 29
圖3.8 輸出電流暫態時域表現 29
圖3.9多模數除頻器架構 31
圖3.10第一級之25% duty cycle除2/3電路 31
圖3.11後五級之50% duty cycle除2/3電路 32
圖3.12 控制電路時序圖 32
圖3.13 第一級控制電路 32
圖3.14 高速 ECL to CMOS放大器 33
圖3.15 高速 ECL to CMOS放大器之放大波形 33
圖3.16 多模數除頻器除頻後之輸出波形 34
圖3.17 壓控振盪器之電路圖 35
圖3.18 控制埠電壓對振盪頻率的關係 36
圖3.19 振盪頻率與偏壓電流關係 36
圖3.20 壓控振盪器 37
圖3.21 壓控振盪器之模擬相位雜訊 37
表3.1 200μA電流不匹配指數小於10%之擺幅限制………………………30
第四章
圖4.1 分數式頻率合成器模組之示意圖.……………….……...……... …..38
圖4.2 Peregrine公司之PE3336晶片功能方塊圖. 39
圖4.3 PLL之線性模型 40
圖4.4 主動迴路濾波器 40
圖4.5 系統迴路頻寬100kHz 41
圖4.6 雙點電壓控制振盪器架構圖 42
圖4.7 壓控振盪器之實際電路圖 43
圖4.8 MASH2之輸出模數控制訊號 44
圖4.9 頻率合成器模組之頻譜(參考頻率20MHz) 45
圖4.10 迴路頻寬25kHz之系統穩定時間量測 46
圖4.11 迴路頻寬50kHz之系統穩定時間量測 46
圖4.12 迴路頻寬100kHz之系統穩定時間量測 46
圖4.13 壓控振盪器與整數除頻頻率合成器之相位雜訊比較 47
圖4.14 迴路頻寬25kHz之分數式頻率合成器相位雜訊 48
圖4.15 迴路頻寬50kHz之分數式頻率合成器相位雜訊 48
圖4.16 迴路頻寬100kHz之分數式頻率合成器相位雜訊 48
圖4.17 四階多級雜訊整形在不同參考頻率之相位雜訊 49
圖4.18 鎖相迴路之晶片 50
圖4.19 鎖相迴路之測試板 50
圖4.20 偵測頻率差表現 51
圖4.21 操作頻率20MHz時偵測相位差表現 51
圖4.22 偵測死帶之測量 51
圖4.23 電荷幫浦直流特性之量測示意圖 52
圖4.24 電荷幫浦輸出電流之 53
圖4.25 電荷幫浦暫態時域之量測示意圖 53
圖4.26 操作頻率1MHz時,電荷幫浦之暫態時域表現. 54
圖4.27 操作頻率20MHz時,電荷幫浦之暫態時域表現.. 54
圖4.28 多模數除頻器之量測示意圖 55
圖4.29 操作頻率2.4GHz之除頻後結果 56
圖4.30 壓控振盪器之頻譜表現@2.37GHz 57
圖4.31 調整埠與調制埠之可調頻率範圍(控制電壓0~1.8V) 57
圖4.32 中心頻率2.3795 GHz之壓控振盪器相位雜訊 58
圖4.33 迴路濾波器 59
圖4.34 鎖相迴路量測之示意圖 60
圖4.35 鎖相迴路之輸出訊號頻譜(參考頻率20MHz) 60
圖4.36 鎖相迴路鎖入時間之量測 60
圖4.37 鎖定中心頻率2320MHz時鎖相迴路輸出訊號之相位雜訊 61
表4.1 壓控振盪器之規格表 …………………………………………………..43
表4.2 各差異積分調制器FPGA設計規格 44
表4.3 鎖入時間之量測 47
表4.4 相位頻率偵測器之模擬與量測規格比較表 52
表4.5 電荷幫浦之規格表 54
表4.6 多模除頻器之規格表 56
表4.7 壓控振盪器模擬與測量結果比較 58
參考文獻 References
參考文獻
[1] 蘇秉恩, “適用於GSM/DCS雙頻發射機之偏移鎖相迴路IC設計,” 工研院系統晶片技術發展中心, 系統晶片001期
[2] T. A. D. Riley, N. M. Filiol, D. Qinghong, and J. Kostamovaara, “Techniques for in-band phase noise reduction in Delta-Sigma synthesizers,” IEEE Tran. Circuits and Systems II: Analog and Digital Signal Processing, pp. 794-803, Nov. 2003.
[3] R. Dehghani, “A 2.5 GHz CMOS fully-integrated Delta-Sigma controlled fractional-N frequency synthesizer,” in Proc. IEEE Int. Conf. VLSI Design, 2004, pp. 163-167.
[4] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz delta-sigma fractional-N PLL with 1-Mb/s in-loop modulation,” IEEE J. Solid-State Circuits, pp. 49-62, Jan. 2004.
[5] B. De Muer and M. S. J. Steyaert, “A CMOS monolithic Delta-Sigma controlled fractional-N frequency synthesizer for DCS-1800,” IEEE J. Solid-State Circuits , pp. 835-844, July 2002.
[6] H. Arora, N. Klemmer, J. C. Morizio, and P. D. Wolf, “Enhanced phase noise modeling of fractional-N frequency synthesizers,” IEEE Tran. Circuits and Systems I: Regular Papers, pp. 379-395, Feb. 2005.
[7] Bean Banerjee.(2001) PLL Performance, Simulation, and Design(2nd Ed.)[on line]. Available: http://www.ehb.itu.edu.tr/~eepazarc/pll/
[8] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, pp. 1019-1022, Aug.1990.
[9] K. Shu, E. Sanchez-Sinencio, F. Maloberti, and U. Eduri, “A comparative study of digital Sigma-Delta modulators for fractional-N synthesis,” in Proc. 8th IEEE Int. Conf., 2001, pp. 1391-1934.
[10] M. Kozak and I. Kale, “A pipelined noise shaping coder for fractional-N frequency synthesis,” IEEE Tran. Instrumentation and Measuremen, pp. 1154-1161, Oct. 2001.
[11] I. Galton, “Delta-sigma data conversion in wireless transceivers,” IEEE Tran. Microwave Theory and Techniques, pp. 302-315, Jan. 2002.
[12] M. J. Borkowski, T. A. D. Riley, J. Hakkinen, and J. Kostamovaara, “A practical Delta-Sigma modulator design method based on periodical behavior analysis, ” IEEE Trans. Circuits and Systems II: Express Briefs, pp. 626-630, Oct. 2005.
[13] B. Miller and R. J. Conley, “A multiple modulator fractional divider,” IEEE Trans. Instrumentation and Measurement, pp. 578-583, June 1991.
[14] 彭康峻,採用雙點差異積分調制方式之寬頻GFSK調制頻率合成器,國立中山大學電機工程研究所博士論文,2004。
[15] 何文豪,採用單迴路差異積分調制器之分數式頻率合成器,國立中山大學電機工程研究所碩士論文,2005。
[16] W. Rhee, B. S. Song, and A. Ali, “A 1.1-GHz CMOS fractional-N frequency synthesizer with a 3-b third-order Delta-Sigma modulator,” IEEE J. Solid-State Circuits, pp. 1453-1460, Oct. 2000.
[17] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski, “Delta-sigma modulation in fractional frequency synthesis,” IEEE J. Solid-State Circuits, vol. 28, pp. 553-559, May 1993.
[18] P. Kiss, J. Arias, D. Li, and V. Boccuzzi, “Stable high-order delta-sigma digital-to-analog converters,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 51, pp. 200-205, Jan. 2004.
[19] M. Bram De and M. S. J. Steyaert, “On the analysis of Delta-Sigma fractional-N frequency synthesizers for high-spectral purity, ” IEEE Trans.Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 784-793, Nov. 2003.
[20] M. H. Perrott, M. D. Trott, and C. G. Sodini, “A modeling approach for Sigma-Delta fractional-N frequency synthesizers allowing straightforward noise analysis,” IEEE J. Solid-State Circuits, vol. 37, pp. 1028-1038, Aug. 2002.
[21] HP Advanced Design System - Circuit Simulateion , Hewlett Packard Company, April 1998.
[22] Delta-Sigma Modulator PLLs With Dithered Divide-Ratio, Agilent Technologies Inc. [Online].Available: http://www.agilent.com.
[23] PLL Design—Analysis of a Sigma-Delta Modulator Using RF Behavioral and System Simulation, Agilent Technologies Inc. [Online].Available: http://www.agilent.com.
[24] George D. Vendelin, Anthony M. Pavio, and Ulrich L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, 2nd ed., NEW York: WILEY, 2005
[25] M. H. Perrott.(Apr. 2005) PLL Design Using the PLL Design Assistant Program[on line]. Available: http://www-mtl.mit.edu./~perrott
[26] G. B. Lee, P. K. Chan and L. Siek, “A CMOS phase frequency detector for charge pump phase-locked loop,” in Proc. 42nd Midwest Symp. Electronics, Circuits and Systems, 1999, pp. 601-604.
[27] N. H. E.Weste and K. Eshraghian, Principles of CMOS VLSI Design—A Systems Perspective, 2nd ed. MA: Addison-Wesley, 1992.
[28] D. Theil, C. Durdodt, A. Hanke, S. Heinen, S. van Waasen, D. Seippel, D. Pham-Stabner, and K. Schumacher,“A fully integrated CMOS frequency synthesizer for Bluetooth,” in IEEE RFIC Conf. Dig., 2001, pp. 103-106.
[29] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4um CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, pp. 788-794, May 2000.
[30] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc. IEEE Int. Conf. Circuits and Systems, 1999, pp. 545-548.
[31] M. El-Hage and Y. Fei, “Architectures and design considerations of CMOS charge pumps for phase-locked loops,” in Proc. IEEE CCECE, 2003, pp. 223-226.
[32] H. Chih-Ming and K. K. O, “A fully integrated 1.5-V 5.5-GHz CMOS phase-locked loop,“ IEEE J. Solid-State Circuits, pp. 521-525, Apr. 2002.
[33] Baker, Li and Boyce, CMOS Circuit Design, Layout and Simulation, New York: Wiley, 1998.
[34] H. Zarei, O. Shoaei, S. M. Fakhraie, and M. M. Zakeri, “A 1.4 GHz/2.7 V programmable frequency divider for DRRS standard in 0.6 um CMOS process,” in Proc. 7th IEEE Int.Conf. electronics, circuit and systems, 2000, pp. 887-890.
[35] T. Kamoto, N. Adachi, and K. Yamashita, “High-speed multi-modulus prescaler IC,” in IEEE Int. Conf. Universal Personal Communications Dig., 1995, pp. 325-328.
[36] C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli, and Z. Wang, “A family of low-power truly modular programmable dividers in standard 0.35-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, pp.1039-1045, July 2000.
[37] H. Zarie, O. Shoaei, and S. M. Fakhraie, “A 37-mW fully integrated GMSK modulator for DRRS standard in 0.6-mm digital CMOS process,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp. 513-520, July 2002.
[38] M. H. Perrott, “Techniques for high data rate modulation and low power operation of fractional-N frequency synthesizer,” Ph.D. dissertation, Dept. Elecrical Eng. Comp.Science.MIT,Cambridge, MA, 1997.


[39] T. I. Ahrens and T. H. Lee, “A 1.4-GHz 3-mW CMOS LC low phase noise VCO using tapped bond wire inductances,” In Proc. 1998 int. Symp., Low Power Electronic and Design, 1998, pp.16-19.
[40] P. Andreani, W. Xiaoyan, L. Vandi, and A. Fard, “A study of phase noise in colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, pp. 1107-1118, May 2005.
[41] J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, pp. 736-744, May 1997.
[42] L. Dauphinee, M. Copeland, and P. Schvan, “A balanced 1.5 GHz voltage controlled oscillator with an integrated,” in IEEE Solid-State Circuit Conf. Dig, 1997, pp. 390-391.
[43] J. Craninckx, M. Steyaert, and H. Miyakawa, “A fully integrated spiral-LC CMOS VCO set with prescaler for GSM and DCS-1800 systems, ” in Proc. Custom Integrated Circuit Conf. 1997, pp. 403-406.
[44] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, pp. 717-724, May 1999.
[45] W. HongMo, A. Hajimiri, and T. H. Lee, ”Comments on ”Design issues in CMOS differential LC oscillators”[and reply],” IEEE J. Solid-State Circuits, pp. 286-287, Feb. 2000.
[46] J. Lin, M. Jian-Guo, Y. Kiat Seng, and D. Manh Anh, “9.3-10.4-GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Trans. Microwave Theory and Techniques, pp. 1273-1278, April 2004.
[47] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1011, Aug. 2002.
[48] R. Dehghani and S. M. Atarodi, “Design of an optimised 2.5 GHz CMOS differential LC oscillator,” in Proc. 2004 IEE Microwaves, Antennas and Propagation, pp. 167-172.
[49] K. Yao-Huang and H. Meng-Ting, “Theoretical analysis of low phase noise design of CMOS VCO,“ IEEE Microwave and Wireless Components Letters, vol. 15, pp. 33-35, Jan. 2005.
[50] Integer-N PD PLL Loop Filter Calculator, Peregrine Semiconductor Co.[on line].Available: http://www.peregrine-semi.com
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code