Responsive image
博碩士論文 etd-0715122-122719 詳細資訊
Title page for etd-0715122-122719
論文名稱
Title
三相雙主動橋式直流-直流轉換器之輕載效率提升
Light-load Efficiency Enhancement for Three-Phase Dual Active Bridge DC-DC Converters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2022-07-28
繳交日期
Date of Submission
2022-08-15
關鍵字
Keywords
三相雙主動橋式直流-直流轉換器、隔離型雙向直流轉換器、雙向充放電、輕載效率、零電壓切換
three-phase dual active bridge dc-dc converter, isolated bi-directional dc-dc converter, bi-directional charging, light-load efficiency, zero voltage switching (ZVS)
統計
Statistics
本論文已被瀏覽 181 次,被下載 0
The thesis/dissertation has been browsed 181 times, has been downloaded 0 times.
中文摘要
近年來全球大力推行淨零碳排之願景,未來汽機車之能源也將全面改用電能作為動力來源,因此電動車相關產業的發展正備受矚目。其中,電池充電轉換器為電動車發展之核心,雙向電力轉換器之需求也將大幅增加。同時,全球數據中心也正持續擴增,其使用的電源轉換器大多運行在輕載模式,若能提升其轉換器之輕載效率,將大幅降低其設備能源的使用量,因此轉換器於輕載效率的探討,則是值得深入研究的議題。本文以三相雙主動橋式直流-直流轉換器(Three-Phase Dual Active Bridge, TPDAB)作為研究之電路架構,提出一種單相模式(Single-phase mode)結合三相模式(Three-phase mode)之控制法,並依照負載情況選擇其三相與單相之動作模式,以改善轉換器之輕載效率,亦可延長功率開關長時間運作下之使用壽命,進而提升其系統可靠度。本文首先說明電路之架構與原理,進行電路動作模式分析,並探討轉換器之傳輸功率與功率開關柔性切換之特性,以及損失估算分析。其次以PSIM模擬軟體驗證所設計之功能,最終完成高壓側380V、低壓側48V與輸出功率720W之實體電路,並以數位訊號處理器作為控制核心進行電路實驗,以驗證所提出架構與控制法之可行性。經由實驗結果證實,本文所提出之控制方法,可使三相雙主動橋式直流-直流轉換器之輕載效率提升近8%。
Abstract
In recent years, the world has been promoting the prospect of net zero carbon emissions, and the energy source of automobiles will be fully switched to electricity in the future. Therefore, the development of electric vehicle related industries is being emphasized, battery charging converters are the core of the development of electric vehicles, and the demand for bi-directional power converters will increase significantly. Meanwhile, the global data centers are expanding, and most of their power converters operate in light-load mode. If the light-load efficiency of the converter can be improved, the energy usage of the equipment will be significantly reduced. In this thesis, the three-phase dual active bridge (TPDAB) dc-dc converter is used as the circuit structure, and the control method of single-phase mode combined with three-phase mode is proposed. The three-phase and single-phase modes of operation are selected according to the load conditions to improve the light-load efficiency of the converter, extend the lifetime of the MOSFET under long-time operation, and further enhance the reliability of the system. Firstly, the circuit structures, principles, and operation modes are analyzed, and the transmission power of the converter, loss estimation, and the soft switching characteristics of MOSFET are explored. Then, the TPDAB prototype of 380V to 48V with 720W output power is completed and implemented, and the correctness is verified by PSIM. The experimental results confirm that the proposed control methods can improve the light-load efficiency of the three-phase dual active bridge dc-dc converter by nearly 8%.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
符號表 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻探討 2
1.3 論文大綱 3
第二章 三相雙主動橋式直流-直流轉換器 5
2.1 單相與三相DAB轉換器之電路介紹 5
2.2 三相模式-電路動作模式分析 9
2.3 三相模式-功率傳輸特性與ZVS分析 17
第三章 單相模式之三相雙主動橋式直流-直流轉換器 24
3.1 單相模式-電路介紹與動作模式分析 24
3.2 單相模式-功率傳輸特性與ZVS分析 30
3.3 電路損失估算分析 34
3.3.1 各電流點計算與比較 35
3.3.2 功率開關導通損失計算 37
3.3.3 功率開關切換損失計算 38
3.3.4 磁性元件損失計算 41
3.4 電路模擬驗證 43
第四章 實驗結果與分析 49
4.1 電路設計與周邊電路 49
4.1.1 實驗電路介紹 49
4.1.2 電感設計 51
4.1.3 高頻變壓器設計 51
4.1.4 取樣與驅動電路 54
4.1.5 控制電路設計 55
4.2 實驗波形(380V to 48V) 56
4.2.1 三相模式-實驗波形分析 56
4.2.2 單相模式-實驗波形分析 61
4.3 實驗波形(48V to 380V) 64
4.3.1 三相模式-實驗波形分析 64
4.3.2 單相模式-實驗波形分析 68
4.4 三相與單相模式之切換暫態與轉態 72
4.5 電路效率比較與分析 76
4.5.1 實驗量測效率 76
4.5.2 實驗與估算效率比較 81
第五章 結論與未來研究方向 83
5.1結論 83
5.2未來研究方向 83
參考文獻 84
參考文獻 References
[1] Yi-Chun Tsai and James Hsiao, “電動車為全球汽車產業重塑良機,” 2021 IEKTopics. 2021, October 7.
[2] Cui engineering, “外接電源供應器的效率標準,” Digi-Key ELECTRONICS. 2015, August 6.
[3] United States Department of Energy(美國能源部).
[4] “Standby power use and the IEA 1-watt plan,” International Energy Agency, Paris, France, Fact Sheet, 2007.
[5] D. Meisner, B. T. Gold and T. F. Wenisch, “PowerNap: Eliminating server idle power,” in Proc. of 14th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2009, pp. 205-216.
[6] Y. Zhang and N. Ansari, “HERO: Hierarchical energy optimization for data center networks,” IEEE Systems Journal, vol. 9, no. 2, June 2015, pp. 406 - 415.
[7] M. Kheraluwala, R. Gascoigne, D. Divan, and E. Baumann, “Performance characterization of a high-power dual active bridge DC-to-DC converter,” in IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294–1301, Nov. 1992.
[8] B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency link power-conversion system,” in IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091-4106, Aug. 2014.
[9] S. Inoue and H. Akagi, “A bidirectional dc-dc converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electronics, vol. 22, no. 6, pp. 2299-2306, November 2007.
[10] A. R. Alonso, J. Sebastian, D. G. Lamar, M. M. Hernando, and A. Vazquez, “An overall study of a Dual Active Bridge for bidirectional DC/DC conversion,” in 2010 IEEE Energy Conversion Congress and Exposition, 2010: IEEE, pp. 1129-1135.
[11] G. Oggier, R. Ledhold, G. Garcia, A. Oliva, J. Balda, and F. Barlow, “Extending the ZVS operating range of dual active bridge high-power DC-DC converters,” in 37th IEEE Power Electronics Specialists Conference, 2006, PESC '06, 2006, pp. 1-7.
[12] G. G. Oggier, Garci, x, G. O. a, and A. R. Oliva, “Modulation Strategy to Operate the Dual Active Bridge DC-DC Converter Under Soft Switching in the Whole Operating Range,” Power Electronics, IEEE Transactions on, vol. 26, no. 4, pp. 1228-1236, 2011.
[13] N. D. Dinh, N. D. Tuyen, G. Fujita, and M. N. B. Muhtazaruddin, “Investigation of ZVS condition for dual-active-bridge converter using dual-phase-shift modulation,” in 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2014: IEEE, pp. 1-6.
[14] M. Kim, M. Rosekeit, S.-K. Sul, and R. W. A. A. De Doncker, “A dual-phase-shift control strategy for dual-active-bridge dc-dc converter in wide voltage range,” in 8th International Conference on Power Electronics - ECCE Asia, 2011, pp. 364–371.
[15] H. Wen and B. Su, “Reactive power and soft-switching capability analysis of dual-active-bridge DC/DC converters with dual-phase-shift control,” Journal of Power Electronics, Vol. 15, No. 1, pp. 18-30, Jan. 2015.
[16] N. Hou, W. Song and M. Wu, “Minimum-current-stress scheme of dual active bridge DC–DC converter with unified phase-shift control,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8552-8561, Dec. 2016.
[17] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745–2760, Jul. 2012.
[18] S. Mukherjee, A. Kumar, and S. Chakraborty, “Comparison of DAB and LLC DC-DC Converters in High-Step-Down Fixed-Conversion-Ratio (DCX) Applications,” IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4383–4398, 2021.
[19] W. Chen, P. Rong, and Z. Lu, “Snubberless bidirectional dc–dc converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075–3086, Sep. 2010.
[20] R. W. A. A. D. Doncker, D. M. Divan and M. H. Kheraluwala, “A three-phase soft-switched high-power-density dc/dc converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63-73, Jan./Feb. 1991.
[21] D. Segaran, D. G. Holmes and B. P. Mcgrath, “Comparative analysis of single and three-phase dual active bridge bidirectional dc-dc converters,” Proc. Australasian Universities Power Eng. Conf., pp. 1-6, 2008.
[22] H. Hoek, M. Neubert and R. W. D. Doncker, “Enhanced modulation strategy for a three-phase dual active bridge—boosting efficiency of an electric vehicle converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5499-5507, Dec. 2013.
[23] J. Hu, N. Soltau, and R. W. De Doncker, “Asymmetrical duty-cycle control of three-phase dual-active bridge converter for soft-switching range extension,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, Sep. 2016, pp. 1–8.
[24] G.-J. Su and L. Tang, “A three-phase bidirectional DC–DC converter for automotive applications,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, Oct. 2008, pp. 1–7.
[25] S. H. Van Hoek, “Design and operation considerations of three-phase dual active bridge converters for low-power applications with wide voltage ranges,” Ph.D. thesis, RWTH Aachen University, Aachen, Germany, 2016.
[26] Ferroxcube, “Core E55/28/21 Specifications,”
[27] Sharp Electronic Components, “PC923L0NSZ Series Datasheet,” Sheet Number: A06001EN, Nov. 2003.
[28] T. Instruments, “TMS320x2833x, Data Manual,” Literature Number: SPRS439C, June 2007–Revised February 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2027-08-15
校外 Off-campus:開放下載的時間 available 2027-08-15

您的 IP(校外) 位址是 18.189.185.100
現在時間是 2025-05-13
論文校外開放下載的時間是 2027-08-15

Your IP address is 18.189.185.100
The current date is 2025-05-13
This thesis will be available to you on 2027-08-15.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2027-08-15

QR Code