Responsive image
博碩士論文 etd-0716119-150714 詳細資訊
Title page for etd-0716119-150714
論文名稱
Title
河口感潮濕地公園水質之季節變化與溫室氣體排放相關性之研究-以援中港濕地公園為例
Relationship between Seasonal Variations of Water Quality and Greenhouse Gas Emission for Estuarine Tidal Wetland Park-A Case Study of Yuanchungan Wetland Park
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
153
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-06-22
繳交日期
Date of Submission
2019-08-16
關鍵字
Keywords
河口感潮濕地、人工濕地、日夜及季節變化、水質淨化、溫室氣體
estuarine tidal wetland, constructed wetland, diurnal and seasonal variation, water quality, greenhouse gases
統計
Statistics
本論文已被瀏覽 5849 次,被下載 46
The thesis/dissertation has been browsed 5849 times, has been downloaded 46 times.
中文摘要
濕地生態系統在氣候變化、減緩溫室氣體排放、生物多樣性、水文調理及人類健康方面發揮著關鍵的作用,因此濕地生態系統逐漸被重視,然而隨著人類的經濟發展,造成濕地面積損失的速度卻是與日俱增。高雄市政府在2003年推動生態廊道的概念,其中援中港濕地公園為高雄市政府工務局所定義的「西高雄濕地生態廊道」之一。本研究場址為援中港濕地公園,為「補償性」濕地生態棲地復育,是高雄市生態濕地廊道中占地面積最大的濕地公園,濕地的位置坐落於典寶溪出海口南側,四周有後勁溪、典寶溪、蚵仔寮、海軍軍區、紅樹林等。於2017年8月至2018年3月期間採樣頻率共為四季,進行濕地水質檢測與氣象資料收集,水質監測採樣點為進水口、出水口、紅樹林區及泥灘地,以了解季節、潮汐、晝夜及不同棲地環境之差異性對於不同水體之水質變化,並透過統計軟體進行分析,與溫室氣體釋出量之相關性探討。水溫、酸鹼值及溶氧皆呈現日高夜低;導電度、鹽度濃度變化與潮汐呈現出高度相關性;磷營養鹽在夏季及秋季的濃度最高,其原因有可能為夏、秋兩季水中正磷酸鹽被植物吸收量少,加上受濕地出水口感潮水源影響,致使底泥受到擾動,而使沉積物中之磷酸鹽釋出水體;氮營養鹽中之亞硝酸鹽及硝酸鹽為夏、秋兩季濃度趨勢相似,皆呈日高夜低,此乃因氨先被氧化為亞硝酸鹽後,再被硝化為硝酸鹽。而氨氮春季濃度最高,推測是因為超過硝化菌的最適合條件,使濕地去除氨氮能力下降,造成氨氮的累積。溫室氣體與水質相關性結果得知,CO2濃度與總有機碳及葉綠素a呈高度相關,推測與濕地中植物(包括水生植物與自營性藻類)在日間行光合作用有關;CH4與硝酸鹽及總氮呈高度正相關,推測在厭氧環境下微生物會轉而進行厭氧分解,而硝化反應在僅0.3 mg/L的低溶氧環境下仍可進行;N2O與硝酸鹽及總氮呈高度相關,推測主要是與脫硝作用有關。
Abstract
The wetlands ecosystem plays an important role on providing us with water and human health, supporting rich biodiversity and climate change, and storing more carbon than any other ecosystem. Because of this, the wetlands ecosystem has gradually been valued. Due to the increase of economic development, the area of wetland is lost faster and faster. Kaohsiung city promoted the concept of ecological corridors in 2003, and Yuanchungan wetland park was defined as one of the “West Kaohsiung Wetland Ecological Corridors” by Kaohsiung city government. The research site of this study is located in Yuanchungan wetland park. The wetland park is a compensatory wetland ecological habitat for restoration, and is the largest wetland in wetland ecological corridors of Kaohsiung, which is located on the south side of the Dian-Boa-Chi to the sea. In this study, the sampling dates were from August 2017 to March 2018 during four seasons for five sampling points. Based on the study, it could be comprehended that the variations of season, day and night, and differences in different habitats by water quality test and meteorological data collection. Through the water quality and stat is tidal analyses from SPSS, the correlation between the emission of greenhouse gases and water quality were analyzed. According to the analytical results, water temperature, pH, and dissolved oxygen were higher during the day than the night. Electrical conductivity and salinity were shown to be highly correlated with tides variation. Phosphate nutrients have the highest concentration is summer and autumn. The reason might be because orthophosphate was less absorbed by plants in the water in summer and autumn, while the effect of tidal current on the wetland sampling point making sediment disturbed to let orthophosphate in the sediment released into the water. For nitrite and nitrate in nitrogen-abundant nutrient salt, they have a similar concentration trend in summer and autumn, both of which presented high levels in the daytime and low levels in the nighttime because ammonia nitrogen in the salt was first oxidized to nitrite before it was further nitrified on nitrate. Ammonia nitrogen exhibited the highest concentration in spring. It might be because the condition because excessive as the most optimal environment for nitrifying bacteria in the wetland existing the reduced capability to remove ammonia nitrogen resulting in such accumulation. The correlation between greenhouse gas and water quality revealed that CO2 concentration was also highly correlated to the total organic carbon and chlorophyll a. It is speculated that this is probably due to the process of photosynthesis by plants in the wetland (including aquatic and self-supporting algae). CH4 also show a strong positive relationship with nitrate and total nitrogen, suggesting that microbes will instead to turn anaerobic hydrolysis under an anaerobic environment, as nitrification can still proceed at a low oxygenated condition of 0.3 mg/L in concentration. N2O is also displaying the same strong positive correlation with nitrate and total nitrogen because of the process of denitrification.
目次 Table of Contents
論文審定書..........................................................................................................i
致謝.....................................................................................................................ii
摘要.....................................................................................................................iii
Abstract ..............................................................................................................iv
目錄......................................................................................................................vi
圖目錄...................................................................................................................ix
表目錄...................................................................................................................xi
第一章 前言...........................................................................................................1
1.1研究起源...........................................................................................................1
1.2研究目的...........................................................................................................3
1.3研究架構...........................................................................................................3
第二章 文獻回顧.....................................................................................................5
2.1濕地概論............................................................................................................5
2.1.1濕地定義.........................................................................................................5
2.1.2濕地分類與型態..............................................................................................7
2.1.3濕地功能與價值...............................................................................................9
2.2濕地的結構與組成.............................................................................................11
2.2.1濕地水文..........................................................................................................12
2.2.2濕地土壤..........................................................................................................13
2.2.3濕地植物...........................................................................................................13
2.3濕地生態的元素循環...........................................................................................14
2.3.1碳的循環...........................................................................................................14
2.3.2磷的循環...........................................................................................................16
2.3.3氮的循環...........................................................................................................19
第三章 材料與方法...................................................................................................25
3.1援中港濕地公園...................................................................................................25
3.1.1研究對象位置與範圍........................................................................................25
3.1.2援中港濕地公園東、西區概述.........................................................................26
3.2採樣時間、位置規畫...........................................................................................27
3.3自然環境因子......................................................................................................30
3.4水質項目保存、分析方法及儀器設備.................................................................38
3.4.1水質保存方法及保存期限.................................................................................38
3.4.2水質各項目分析方法及儀器介紹......................................................................38
3.5溫室氣體連續監測方法及儀器.............................................................................42
3.6數據分析方法與統計............................................................................................44
第四章 結果與討論.....................................................................................................45
4.1援中港濕地公園西區水質監測結果.......................................................................45
4.2現場值水質濃度變化與趨勢...................................................................................45
4.2.1水溫.....................................................................................................................45
4.2.2酸鹼值(pH)..........................................................................................................46
4.2.3溶氧......................................................................................................................49
4.2.4導電度與鹽度.......................................................................................................52
4.2.5氧化還原電位.......................................................................................................55
4.3懸浮固體物與濁度...................................................................................................57
4.4磷與其化合物..........................................................................................................60
4.5氮與其化合物..........................................................................................................62
4.5.1亞硝酸鹽...............................................................................................................62
4.5.2硝酸鹽...................................................................................................................62
4.5.3氨氮.......................................................................................................................66
4.5.4有機氮...................................................................................................................66
4.5.5總氮.......................................................................................................................70
4.6生化需氧量...............................................................................................................72
4.7總有機碳...................................................................................................................74
4.8葉綠素a.....................................................................................................................74
4.9不同季節對污染物去除率比較..................................................................................78
4.10溫室氣體與水質參數之相關性................................................................................80
4.10.1雷達圖分析...........................................................................................................81
4.11連續監測儀與水質實驗分析的相關係數的關係......................................................82
第五章 結論與建議..........................................................................................................92
5.1結論............................................................................................................................92
5.2建議............................................................................................................................93
參考文獻..........................................................................................................................94
附錄 A -水質檢測原始數據..............................................................................................100
附錄 B-水質連續監測原始數據........................................................................................116
參考文獻 References
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., ... & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60.
Barrow, C. J. (1994). Wetlands (2nd edn.), WJ Mitsch and JG Gosselink. Van Nostrand Reinhold, New York, 1993. ISBN 0 442 00805 8,£ 23.95 (hardback), xii+ 722 pp. Land Degradation & Development, 5(1), 57-57.
Bradley, C. (2001). Wetlands by WJ Mitsch and JG Gosselink. John Wiley & Sons, New York, 2000. No. of pages: 920. Price:£ 60.95. ISBN 0 471 29232 X. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 17(3), 295-295.
Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, US Fish and Wildlife Service.
Chaikumbung, M., Doucouliagos, H., & Scarborough, H. (2019). Institutions, Culture, and Wetland Values. Ecological Economics, 157, 195-204.
Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934-941.
Darrah, S. E., Shennan-Farpón, Y., Loh, J., Davidson, N. C., Finlayson, C. M., Gardner, R. C., & Walpole, M. J. (2019). Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecological Indicators, 99, 294-298.
Finlayson, C. M., Everard, M., Irvine, K., & McInnes, R. J. (2017). The Wetland Book, Volume I: Structure and Function, Management and Methods. Springer.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, A., Huang, X., Fu, H., Liu, S., Li, C., Li, X.,Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C., Clinton, N., Zhu, Z., Chen, J. & Li, C. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607-2654.
Goodwin, E. J. (2017). Convention on Wetlands of International Importance, especially as Waterfowl Habitat 1971 (Ramsar). In Elgar Encyclopedia of Environmental Law (pp. 101-108). Edward Elgar Publishing Limited.
Gosselink, J. G., & Turner, R. E. (1978). The role of hydrology in fresh water wetland ecosystems. In. Good, RE, Whigham, DF and Simpson, RL (eds). Freshwater Wetlands: Ecological Processesand Management Potential.
Gosselink, J. G., Hatton, R., & Hopkinson, C. S. (1984). Relationship of organic carbon and mineral content to bulk density in Louisiana marsh soils. Soil Science, 137(3), 177-180.
Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of the total environment, 586, 319-327.
Hammer, D. A. (2014). Creating freshwater wetlands. CRC Press.
He, Y., Tao, W., Wang, Z., & Shayya, W. (2012). Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. Journal of environmental management, 110, 103-109.
Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands.
Kadlec, R. H., & Wallace, S. (2008). Treatment wetlands. CRC press.
Kadlec, R. H., & Reddy, K. R. (2001). Temperature effects in treatment wetlands. Water environment research, 73(5), 543-557.
Klomjek, P., & Nitisoravut, S. (2005). Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 58(5), 585-593.
Kadlec, R. H. (2005). Phosphorus removal in emergent free surface wetlands. Journal of environmental science and health, 40(6-7), 1293-1306.
Li, F., Lu, L., Zheng, X., Ngo, H. H., Liang, S., Guo, W., & Zhang, X. (2014). Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding. Bioresource technology, 169, 395-402.
Mitsch, W. J., & Mander, Ü. (2018). Wetlands and carbon revisited. Ecological Engineering, 114, 1-6.
Mitsch, W.J., and Gosselink, J.G., (1993). Wetlands. Second Edition. John Wiley &Sons, Inc.
Mitsch, W.J., and Gosselink, J.G.,(2000). Wetlands. John Wiley & Sons, Inc.
Mitsch, W. J., Gosselink, J. G., Zhang, L., & Anderson, C. J. (2009). Wetland ecosystems. John Wiley & Sons.
Niu, Z., Zhang, H., Wang, X., Yao, W., Zhou, D., Zhao, K., Zhao, H., Li, N., Huang, H., Li, C., Yang, J., Liu, C., Liu, S., Wang, L & Yang, J. (2012). Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22), 2813-2823.
Ramsar Convention Bureau, (2001). “Wetlands values and functions.” Ramsar Convention Bureau. Gland, Switzerland.
Ramsar Convention, (2015). “Resolution XII.4.” The responsibilities, roles and composition of the Standing Committee and regional categorization of countries under the Ramsar.
Roy, M. C., Azeria, E. T., Locky, D., & Gibson, J. J. (2019). Plant functional traits as indicator of the ecological condition of wetlands in the Grassland and Parkland of Alberta, Canada. Ecological Indicators, 98, 483-491.
Reddy, K. R., & Graetz, D. A. (1988). Carbon and nitrogen dynamics in wetland soils. In The ecology and management of wetlands (pp. 307-318). Springer, New York, NY.
Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical reviews in environmental science and technology, 29(1), 83-146
Shaw, S. P., & Fredine, C. G. (1956). Wetlands of the United States: their extent and their value to waterfowl and other wildlife.
Spence, P. L., & Jordan, S. J. (2013). Effects of nitrogen inputs on freshwater wetland ecosystem services–A Bayesian network analysis. Journal of environmental management, 124, 91-99.
Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530-549.
Werner Stumm, & James J. Morgan. (1981). Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons.
Yang, L., Jiang, M., Zhu, W., Han, L., & Qin, L. (2019). Soil bacterial communities with an indicative function response to nutrients in wetlands of Northeastern China that have undergone natural restoration. Ecological Indicators, 101, 562-571.
Yin, X., Zhang, J., Hu, Z., Xie, H., Guo, W., Wang, Q., Ngo, H,H., Liang, S., Lu, S. & Wu, W. (2016). Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis. Environmental Science and Pollution Research, 23(15), 15524-15531.
中央氣象局,交通部,2018
內政部營建署城鄉發展分署,(2011),國家重要濕地碳匯功能調查計畫,結案報告
江純安,(2013),紅樹林於鹹水型人工濕地對污染物去除效率之研究,國立中山大學海洋環境及工程學系碩士論文
邱文彥,(20004), 人工濕地極其景觀生態之應用 行政院公共工程委員會標及生態工法案例編選及第十一章
林瑩峰、陳國超,(2003), 濕地與全球暖化 ,台灣濕地聯盟
林昇衡 ,(2004), 高總有機碳原水處理之研究 ,成功大學環境工程學系碩博士班論文
林瑩峰、荊樹人、賴建志、黃盈慈、李博霖,(2014),人工濕地的氧化亞氮排放,環境工程會刊
呂志宏,(2001),有機廢水之硝化與脫硝處理研究,大同大學生物工程研碩士論文,第7頁-21頁
曾祥霖,(2011),水生植物與大漢溪人工溼地污水處理能力關係之探討,國立中興大學碩士論文
經濟部水利局,(2008),高雄地區典寶溪排水系統整治及環境營造規劃報告,經濟部水利署水利規劃試驗所
詹順貴,(2013),聯合國濕地保護的台灣最新立法回應,,新世紀智庫論壇第63期
黃晴美,(2018),感潮帶人工濕地溫室氣體季節排放特性及碳匯功能解析-以援中港濕地西區為例,國立中山大學環境工程研究所碩士論文
劉靜靜,(1993),台灣海岸濕地保護策略與法制之研究,國立中山大學海洋環境系碩士論文
陳宜清,(2004),農田濕地之發展及願景,台灣濕地,第47 期,第4-13頁
陳有祺,(2003),生態濕地工程,滄海書局
陳有祺,(2005),人工濕地構築與溼地復育評估,國際水利生態工法研討會論文集,第75頁-81頁
陳志遠 、王天元、 陳孟仙,(2003), 愛河常見魚類低溶氧窒息死亡之研究,中華民國環境保護學會學刊
陳鈞華、李煜基 、蔡瀚德、鄭富尚、徐貴新 、甘俊二 ,(2012),應用灰色關聯理論於人工濕地多指標水質關聯分析
陳忠勳,(2008),人工濕地之水質淨化效益研究,國立中山大學環境工程研究所碩士論文
陳華玟,謝凱旋,何信昌,(1998),台灣地質圖說明書:高雄,經濟部中央地質調查所
謝政宏, (2004),濁度與葉綠素含量於人工生態池之時空分布研究,國立屏東科技大學水土保持系碩士論文
簡淑娟,(2005), 人工溼地系統處理污水污染物去除和氧化還原電為關西之探討,嘉南藥理科技大學環境工程與科學系碩士論文
鄭嘉鈞,(2015),高雄市府水利局,高雄市污染下水道與高雄市境內河川水質之統計分析
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code