論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2029-08-16
校外 Off-campus:開放下載的時間 available 2029-08-16
論文名稱 Title |
基於深度學習心電圖分析末期腎臟病合併血液透析的相關性研究 Deep Learning Analysis of ECG Correlation in End-Stage Renal Disease with Hemodialysis |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
58 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
|||
口試委員 Advisory Committee |
|||
口試日期 Date of Exam |
2024-07-24 |
繳交日期 Date of Submission |
2024-08-16 |
關鍵字 Keywords |
心電圖、慢性腎臟病、血液透析、數位化、深度神經網路 EKG, CKD, Hemodialysis, Digitization, DNN |
||
統計 Statistics |
本論文已被瀏覽 102 次,被下載 0 次 The thesis/dissertation has been browsed 102 times, has been downloaded 0 times. |
中文摘要 |
本研究針對台灣慢性腎臟病(CKD)及腎臟病末期(ESRD)患者的高發病率,特別關注伴隨的心血管疾病風險,旨在利用心電圖數據判斷是否為血液透析患者,並探索腎病與心臟健康之間的相關性。研究資料來自高雄醫學大學附設中和紀念醫院(KMUH),陽性資料集包含 5187 筆血液透析患者的心電圖,陰性資料集包含 10733 筆健康檢查者的心電圖。為平衡資料,我們使用降採樣技術將陰性樣本數量降至與陽性樣本相同。本研究開發了一種創新的心電圖影像數位化方法,不僅提高了數據處理的效率和準確性,也使得深度神經網路能夠更精確地識別與腎病相關的心電圖特徵。我們利用深度神經網路技術來學習並分析這些心電圖數據,以期在非侵入性情況下,準確識別腎病末期患者,從而及時提醒患者進行腎臟科回診或開始血液透析,並為處於腎病五期的患者提供早期預警。研究結果顯示,通過深度神經網路模型,我們的系統在診斷腎病末期方面表現優異,準確度達到 97%,且正確陽性率(PPV)和陰性預測值(NPV)也有出色的表現。本研究不僅為心腎相關性研究提供了新的見解,還展現了心電圖作為早期診斷工具的臨床應用潛力。未來,我們計劃進一步優化模型,以實現腎病患者的早期診斷和管理,改善患者的生存質量。 |
Abstract |
This study focuses on the high prevalence of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in Taiwan, particularly their link to cardiovascular risks. We aimed to use electrocardiogram (ECG) data to identify hemodialysis patients and explore the connection between kidney disease and heart health. Data from Kaohsiung Medical University Hospital (KMUH) included 5,187 ECGs from hemodialysis patients and 10,733 from healthy individuals. We balanced the datasets by down-sampling the negative samples to match the positive ones. A novel ECG digitization method was developed, enhancing data processing efficiency and allowing deep neural networks to better identify kidney disease-related features. Our deep learning model accurately diagnosed ESRD with an accuracy of 97%, showing strong predictive values. This study highlights the potential of ECGs as an early diagnostic tool for kidney disease, and we plan to further optimize the model to improve early diagnosis and management. |
目次 Table of Contents |
目錄: 論文審定書i 誌謝ii 摘要iii Abstract iv 圖次 vii 表次 viii 第一章 介紹1 1.1 研究背景1 1.1.1 慢性腎臟病 (Chronic Kidney Disease, CKD) 1 1.1.2 心臟與血液透析2 1.2 研究動機與目的3 1.3 論文架構5 第二章 文獻探討6 2.1 心電圖數位化6 2.1.1 心電圖轉換一維訊號6 2.1.2 離散小波轉換7 2.2 深度學習基於 EKG 的疾病預測7 2.3 深度學習神經網路架構8 2.3.1 LSTM (Long-Short Term Memory) 8 2.3.2 殘差網路模型(ResNet)10 2.3.3 壓縮與激勵神經網路(SENet)11 第三章 研究方法12 3.1 資料收集12 3.2 資料預處理13 3.2.1 輸入心電圖類別偵測13 3.2.2 心電圖數位化15 3.2.3 結果比較23 3.3 深度神經網路架構25 3.3.1 基於 LSTM 的一維心電訊號預測模型25 3.3.2 1D-ResSENet (Residual Squeeze-and-Excitation Network) 27 第四章 實驗結果與分析30 4.1 實驗設置與評估指標30 4.2 資料平衡32 4.3 超參數設置33 4.4 模型的表現差異34 4.5 模型在各年齡層的表現38 4.6 模型在不同性別的表現40 4.7 方法比較 42 第五章 結論 44 參考文獻46 圖次 圖1-1 12導程心電圖4 圖2-1舊數位化系統效果與實際心電圖對照7 圖2-2 LSTM單元結構示意圖8 圖3-1本研究實驗流程12 圖3-2不同類別的心電圖示意圖13 圖3-3背景移除後的心電圖14 圖3-4數位化流程示意圖15 圖3-5此二類心電圖導程時長皆為48秒16 圖3-6不同心電圖之電壓比例尺16 圖3-7軌跡追蹤示意圖17 圖3-8 𝐸𝐾𝐺1𝐷生成流程21 圖3-9將𝐸𝐾𝐺1𝐷進行9層小波分解後的心電圖分量22 圖3-10校正基線飄移與濾除噪聲之前後比較範例23 圖3-12數位化結果比較24 圖3-13本論文解決S波失真的具體流程圖24 圖3-14 LSTM模型架構圖25 圖3-15 1D-ResSENet模型架構圖27 圖4-1混淆矩陣30 圖4-2 LSTM模型準確度與損失曲線35 圖4-3 LSTM模型測試混淆矩陣35 圖4-4 LSTM模型的接收者操作特徵曲線(ROCcurve)36 圖4-5 1D-ResSENet模型準確度與損失曲線37 圖4-6 1D-ResSENet模型測試混淆矩陣37 圖4-7 1D-ResSENet模型的接收者操作特徵曲線(ROCcurve)38 圖4-8年齡分群ROC曲線38 圖4-9年齡分群ROC曲線39 圖4-10性別分群ROC曲線41 圖4-11性別分群ROC曲線41 圖4-12比較相關模型的混淆矩陣(4生理參數輸入)43 表次 表3-1 LSTM模型的詳細架構26 表3-2 1D-ResSENet模型詳細架構29 表4-1訓練使用的超參數33 表4-2 LSTM Model Performance on Different Patient Info(%)34 表4-3 1D-ResSENet Model Performance on Different Patient Info(%)36 表4-4 2Inputs Model Age Distribution(20span)39 表4-5 4Inputs Model Age Distribution(20span)40 表4-6 2Input Model Gender Distribution41 表4-7 4Input Model Gender Distribution42 表4-8各模型方法比較43 |
參考文獻 References |
[1] G. Eknoyan, N. Lameire, K. Eckardt, B. Kasiske, D. Wheeler, A. Levin, P. Stevens, R. Bilous, E. Lamb, J. Coresh, et al., “KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease,” Kidney Int, vol. 3, no. 1, pp. 5–14, 2013. [2] J. Massagué, “Receptors for the TGF-𝛽family,” Cell, vol. 69, no. 7, pp. 1067–1070, 1992. [3] G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor 𝛽in human disease,” New England Journal of Medicine, vol. 342, no. 18, pp. 1350– 1358, 2000. [4] W. G. Couser, G. Remuzzi, S. Mendis, and M. Tonelli, “The contribution of chronic kidney disease to the global burden of major noncommunicable diseases,” Kidney International, vol. 80, no. 12, pp. 1258–1270, 2011. [5] P. W. Eggers, “Has the incidence of end-stage renal disease in the USA and other countries stabilized?,” Current Opinion in Nephrology and Hypertension, vol. 20, no. 3, pp. 241–245, 2011. [6] M. R. Weir and V. J. Dzau, “The renin-angiotensin-aldosterone system: a specific target for hypertension management,” American Journal of Hypertension, vol. 12, no. S9, pp. 205S–213S, 1999. [7] A. K. Bidani and K. A. Griffin, “Pathophysiology of hypertensive renal damage: implications for therapy,” Hypertension, vol. 44, no. 5, pp. 595–601, 2004. [8] C. Mogensen, “Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes,” New England Journal of Medicine, vol. 310, no. 6, pp. 356–360, 1984. [9] J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physio- logical Reviews, vol. 93, no. 1, pp. 137–188, 2013. [10] C. K. D. P. Consortium et al., “Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis,” The Lancet, vol. 375, no. 9731, pp. 2073– 2081, 2010. [11] J. A. Kraut and I. Kurtz, “Metabolic acidosis of CKD: diagnosis, clinical character- istics, and treatment,” American Journal of Kidney Diseases, vol. 45, no. 6, pp. 978– 993, 2005. [12] V. Jha, G. Garcia-Garcia, K. Iseki, Z. Li, S. Naicker, B. Plattner, R. Saran, A. Y.-M. Wang, and C.-W. Yang, “Chronic kidney disease: global dimension and perspec- tives,” The Lancet, vol. 382, no. 9888, pp. 260–272, 2013. [13] H. Schiffl, S. M. Lang, and R. Fischer, “Daily hemodialysis and the outcome of acute renal failure,” New England Journal of Medicine, vol. 346, no. 5, pp. 305–310, 2002. [14] F. Locatelli, B. Canaud, K.-U. Eckardt, P. Stenvinkel, C. Wanner, and C. Zoccali, “Oxidative stress in end-stage renal disease: an emerging threat to patient outcome,” Nephrol. Dial. Transplant, vol. 18, pp. 1272–1280, July 2003. [15] R. W. Schrier, Diseases of the Kidney and Urinary Tract (8th ed.). Williams Wilkins, 2006. Lippincott [16] M. J. Shensa et al., “The discrete wavelet transform: wedding the a trous and Mallat algorithms,” IEEE Transactions on Signal Processing, vol. 40, no. 10, pp. 2464– 2482, 1992. [17] J. Cheng, Q. Zou, and Y. Zhao, “ECG signal classification based on deep CNN and BiLSTM,” BMC Medical Informatics and Decision Making, vol. 21, pp. 1–12, 2021. [18] T. M. Ingolfsson, X. Wang, M. Hersche, A. Burrello, L. Cavigelli, and L. Benini, “ECG-TCN: Wearable cardiac arrhythmia detection with a temporal convolutional network,” in 2021 IEEE 3rd International Conference on Artificial Intelligence Cir- cuits and Systems (AICAS), pp. 1–4, IEEE, 2021. [19] H. Ma, C. Chen, Q. Zhu, H. Yuan, L. Chen, and M. Shu, “An ECG signal classifica- tion method based on dilated causal convolution,” Computational and Mathematical Methods in Medicine, vol. 2021, no. 1, p. 6627939, 2021. [20] L. Medsker and L. C. Jain, Recurrent neural networks: design and applications. CRC press, 1999. [21] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141, 2018. [22] C.-J. Chung, “基於深度神經網路之心臟驟停風險預測系統,” 國立中山大學碩 士論文, 2023. [23] U. Grenander, Probability and Statistics: The Harald Cramér Volume. Almqvist Wiksell, 1959. [24] C. J. De Luca, L. D. Gilmore, M. Kuznetsov, and S. H. Roy, “Filtering the sur- face EMG signal: Movement artifact and baseline noise contamination,” Journal of Biomechanics, vol. 43, no. 8, pp. 1573–1579, 2010. [25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. [26] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv Preprint arXiv:1607.06450, 2016. [27] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv Preprint arXiv:1606.08415, 2016. [28] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help optimization?,” Advances in Neural Information Processing Systems, vol. 31, 2018. [29] J. A. Swets, “The Relative Operating Characteristic in Psychology: A technique for isolating effects of response bias finds wide use in the study of perception and cognition.,” Science, vol. 182, no. 4116, pp. 990–1000, 1973. [30] F. Sebastiani, “Machine learning in automated text categorization,” ACM Computing Surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002. [31] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval. Cambridge university press, 2008. |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2029-08-16 校外 Off-campus:開放下載的時間 available 2029-08-16 您的 IP(校外) 位址是 216.73.216.218 現在時間是 2025-06-05 論文校外開放下載的時間是 2029-08-16 Your IP address is 216.73.216.218 The current date is 2025-06-05 This thesis will be available to you on 2029-08-16. |
紙本論文 Printed copies |
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。 開放時間 available 2029-08-16 |
QR Code |