參考文獻 |
一、 英文文獻 1. Akigiray, V. and Booth G., ( 1998) “Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements,” The Review of Economics and Statistics, Vol. 70, No. 4, pp. 631-637. 2. Amin, Kaushik and Robert Jarrow. (1992) “Pricing Options on Risky Assets in a Stochastic Interest Rate Economy,” Mathematical Finance Vol. 2, pp. 217-237. 3. Barndoff-Nielsen, O. E., (1995) “Normal Inverse Gaussian Distributions and the Modeling of Stock Returns,” Research Report No. 300, Department of Theoretical Statistics, Aarhus University, 4. Bakshi, G, Cao, C. and Chen, Z. ( 1997)“ Empirical Performance of Alternative Option Pricing Models,” The Journal of Finance ,vol. 52, pp.2003-2049 5. Ball, C. A., and Roma, A., (1994) ” Stochastic Volatility Option Pricing,” Journal of Financial and Quantitative Analysis ,vol. 29, pp. 589-607. 6. Bates, D. (1996) “Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” Review of Financial Studies, Vol. 9, pp. 69-107. 7. Britten-Jones, M., & Neuberger, A. (1999) “Option Prices, Implied Price Processes, Stochastic Volatility,” Journal of Finance, Vol. 55, No. 2, pp.839-866. 8. Carr, P. and Madan, D., (1999) “Option Valuation Using the Fast Fourier Transform,” Journal of Computational Finance, Vol. 2, No. 4, pp. 61-73. 9. Carr, P., Geman, H., Madan, D. B., and Yor, M., (2002) “The Fine Structure of Asset Returns: An Empirical Investigation,” Journal of Business, Vol. 75, No. 2, pp. 305-332. 10. Carr, P., Geman, H., Madan, D. B., and Yor, M. (2003) “Stochastic Volatility for Lévy Processes,” Mathematical Finance, Vol. 13, No. 3, pp. 345-382. 11. Cont, R. and Tankov, P. (2003) “Financial Modeling with Jump Processes,” CHAPMAN&HALL/CRC Financial Mathematics Series, pp. 117. 12. Cox, J. C. and S. A. Ross (1976) “A Valuation of Options for Alternative Stochastic Processes,” Journal of Financial Economics, Vol.3, pp. 145-166. 13. Derman, E. I. Kani, & Zou, J. (1996) “The local volatility surface: Unlocking the information in index option prices,” Financial Analysts Journal, pp.25-36. 14. Helyette Geman. (2002) “Pure jump Levy processes for asset price modeling,” Journal of banking & finance, vol.26, pp.1297-1316 15. Heston, S. (1993), “A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Review of Financial Studies, Vol. 6, pp. 327-343. 16. Huang, J. Z. and L. Wu (2004), “Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes,” Journal of Finance, Vol. 59,pp.1405-1439. 17. Hull, J., White, A. (1987) “The pricing of options on assets with stochastic volatilities,” Journal of Finance, Vol. 42, pp.281-300. 18. Kazuhisa Matsuda(2004) “Introduction to Pricing with Fourier Transform: Option Pricing with Exponential Levy Moel,” The City University of New York. 19. Kim, I. J., and Kim, S., (2003) “ Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market,” Pacific-Basin Finance Journal Vol. 12, pp. 117-142. 20. Lam, K., E. Chang and M. C. Lee (2001), “An Empirical Test of the Variance Gamma Option Pricing Model,” Pacific-Basin Finance Conference, Seoul, Korea. 21. Lin, Y. N., S, N., and Xu, X., (2001)” Pricing FTSE 100 Index Options Under Stochastic Volatility,” The Journal of Futures Markets, vol. 21,pp.197-211. 22. Madan, D. B., Carr, P., and Chang, E. C., (1998) “The Variance Gamma Process and Option Pricing,” European Finance Review, Vol. 2, No. 1, pp. 79-105 23. Madan, D. B. and Seneta, E., (1990 )“The VG Model for Share Market Returns,” Journal of Business, Vol.63, pp. 511-524 24. Merton, R. C. (1973) “Theory of Rational Option Pricing,” Bell Journal of Economics and Management Science, Vol. 4, No. 1, pp.141-183. 25. Merton, R.(1976) ” Option pricing when underlying stock return are discontinuous,” Journal of Financial Economics, vol. 11, pp. 474-491. 26. Nandi, Saikat (1996) “Pricing and Hedging Index Options under Stochastic Volatility: An Empirical Examination,” Working Paper, 96-9, Federal Reserve Bank of Atlanta. 27. Scott, L. O. (1987). ” Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application,” Journal of Financial and Quantitative Analysis vol. 22, pp. 419-437. 28. Scott, L. O. (1997), “Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of Fourier Inversion methods,” Mathematical Finance, Vol. 7, pp. 413-424. 29. Stein, E. M., and Stein, J. C. (1991)” Stock Price Distribution with Stochastic Volatility: An Analytic Approach,” The Review of Financial Studies ,vol. 4,pp. 727-752. 二、 中文文獻 1. 吳仰哲(2009),「Lévy 與GARCH-Lévy 過程之選擇權評價與實證分析:台灣加權股價指數選擇權為例」,管理與系統,第十七卷,49-74頁 2. 王麗妙 (1999),「以跳躍-擴散模型評價單一型認購權證之實證研究」,碩士論文,高雄第一科技大學金融營運研究所。 3. 徐有順 (2000),「The Effect of Skewness and Kurtosis Adjustment for Alternative Option Pricing Models」,碩士論文,中正大學財務金融研究所。 4. 陳能靜(2003),「隨機波動度下選擇權評價之實證-以台灣股價指數選擇權為例」碩士論文,輔仁大學金融研究所。 5. 簡同威(2008),「運用快速傅立葉轉換於具有特徵函數之選擇權評價模型-台指選擇權之實證」,碩士論文,淡江大學金融研究所。 6. 黃昱仁(2008), 「快速傅立葉轉換下的選擇權訂價模型-以台指選擇權為例」,碩士論文,淡江大學金融研究所。 7. 陳姵樺(2007),「利用快速傅立葉轉換進行跳躍發散與隨機波動模型之選擇權評價應用—以台指選擇權為例」,碩士論文,銘傳大學財務金融研究所。 |